Série A

Réducteurs et motoréducteurs à vis

Index

1	Rossi for You	4
2	Caractéristiques, avantages et gamme	8
3	Panoramique du produit	22
4	Installation et entretien	100
5	Accessoires et exécutions spéciales	108
6	Formules techniques	118

Rossi for You

Innovation

Rossi offre une large gamme de solutions pour un monde industriel en constante évolution, des réducteurs et des motoréducteurs flexibles et innovants, également pour des applications personnalisées, visant à maximiser les performances et à minimiser le coût total de possession (TCO)..

Haute qualité, garantie de 3 ans

Notre objectif est d'innover et d'améliorer la productivité grâce à des produits performants, précis, fiables et de haute qualité dans le monde entier. Nous avons toujours une longueur d'avance en proposant et en développant des solutions capables de satisfaire des besoins d'application infinis, même dans les conditions les plus sévères.

Fiabilité

Nous sommes une entreprise fiable, capable d'offrir la flexibilité et le savoir-faire nécessaires pour répondre aux différents besoins du marché au niveau international, dans tous les secteurs industriels, attentive à la durabilité environnementale et aux valeurs éthiques et de sécurité, afin de préserver l'avenir..

Outils et procédés

Nous continuons à investir dans de nouveaux outils et procédés, notre équipe de spécialistes hautement spécialisés dans différents domaines est en mesure de trouver la solution qui répond le mieux à vos besoins. Nous sommes toujours à vos côtés à chaque étape du projet.

Service après-vente

Nos techniciens hautement qualifiés assurent un service après-vente rapide et efficace dans le monde entier.

Assistance digitale

En plus de notre portail Rossi for You disponible 24 heures sur 24 et 7 jours sur 7, une suite d'outils numériques vous permet d'accéder au suivi en temps réel des commandes, des factures, de télécharger les plans des pièces détachées et de contacter notre service clientèle..

Experience

Avec plus de 70 ans d'histoire, Rossi est en mesure de satisfaire tous vos besoins, qu'il s'agisse d'un projet standard ou d'une solution personnalisée.

Présence globale service local

Assistance locale

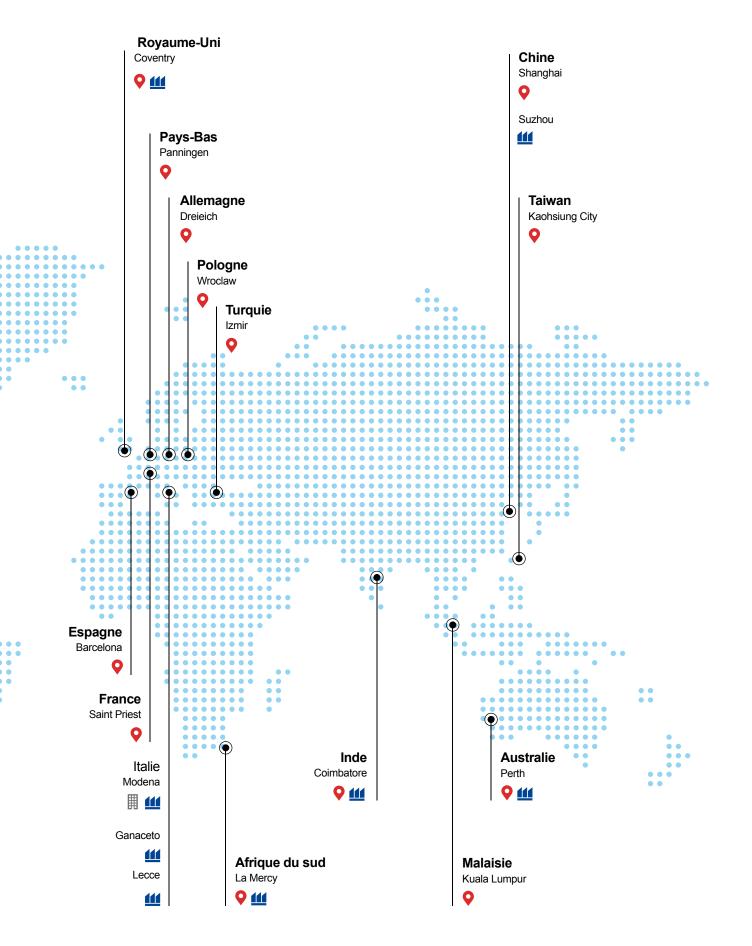
Vente, service à la clièntele, support technique, piòeces détachées

15 filiales *

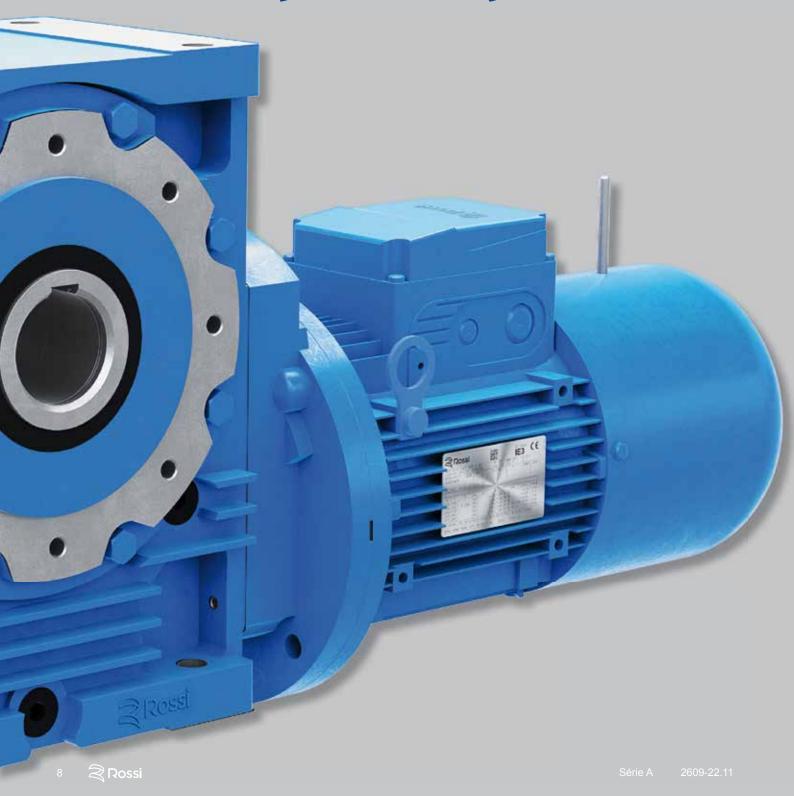
Réseau de distribution international *

Un réseau capillaire de filiales et distributeurs au niveau international.

Dalla fase di progettazione al servizio post-vendita Rossi S.p.A. est toujours à vos côtés, un partenaire local fiable et flexible.


Rossi for You, la suite numérique disponible 24/7 pour la consultation continue et actualisée de commandes, expéditions et assistance.

*Contacts disponibles sur www.rossi.com



Caractéristiques, avantages et gamme

Performances maximales

Inonéité à la movimentation de toutes applications

Précision des engrenages

Performances élevées grâce à la précision maximum des engrenages

Modularité

Produit modulaire pour des applications personalissées

Entretien minimum, rendements et

silenciosité maximum

Digitalisation

Rossi for You est toujours disponible pour toute information

Know-how

Notre expérience à votre service

₹ Rossi

Réducteurs à vis

32 ... 81

RV à engrenage à vis

100 ... 250

100 ... 250

R IV à 1 engrenage cylindrique et vis

Motoréducteurs à vis

32 ... 81

MR V à engrenage à vis

MR IV à 1 engrenage cylindrique et vis

40 ... 81

MR 2IV à 2 engrenages cylindriques et vis

Groupes réducteurs et motoréducteurs (combinés)

R V + R V

RV+RIV

MR V + R 2I, 3I

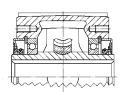
MR IV + R 2I, 3I

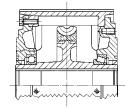
RV+MRV

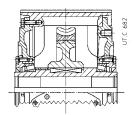
RV+MRIV

MR V + MR 2I, 3I

MR IV + MR 2I, 3I

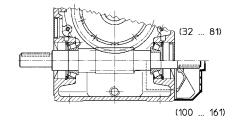

Réducteurs et motoréducteurs (roue à vis)

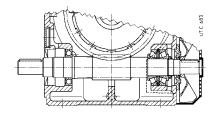


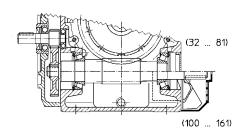

63 ... 160

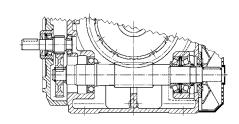
161

200, 250

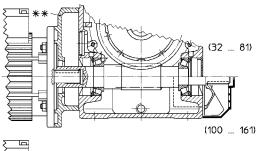


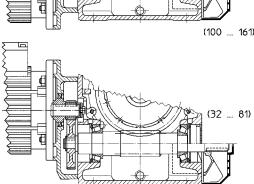


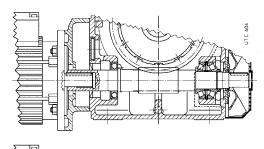

Réducteurs (vis sans fin)

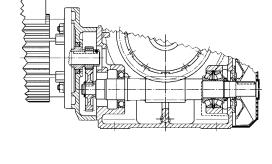

32* ... 161

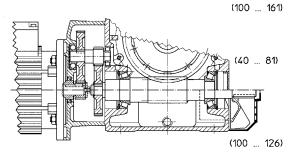
200, 250






Motoréducteurs (vis sans fin)


32* ... 161


200, 250

^{*} Taille : roulement à deux rangée de billes à contact oblique plus un à billes.

** Pour: MR V 32, 40 avec moteur taille 63 (11×140) et 71 (14×160) (voir chap. 2b), MR V 50 avec moteur taille 71 (14×160) et 80 (19×200) (voir chap. 2b), MR V 63 ... 81 avec moteur taille 80 (19×200) et 90 (24×200) (voir chap. 2b), la bride moteur est normalement incorporée à la carcasse.

Caractéristiques, avantages et gamme

Fixation de type universel avec pattes incorporées à la carcasse sur les 3 côtés (tailles 32 ... 81) ou sur les 2 côtés (tailles 100 ... 250) et avec bride B14 sur 2 côtés. La forme et la robustesse de la carcasse pemettent des intéressants systèmes de fixation pendulaire

Espacement rapproché des tailles et des performances (des tailles contiguës sont obtenues avec la même carcasse et beaucoup de composants en commun)

Performances elevées - bronze au Ni - fiables et essayées; optimisation des performances de l'engrenage à vis (profil à développante ZI et profil adéquatement conjugué de la roue à vis)

Compacité, dimensions normalisées et corréspondance aux normes

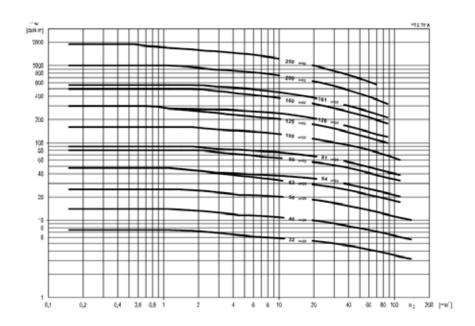
Moteur normalisé IEC

Carcasse monobloc en fonte, rigide et précise

Plus d'espace entre le train d'engrenages et la carcasse pour:

- haute capacité d'huile;
- mineure pollution de l'huile;
- durée majeure de la roue à vis et des roulements de la vis;
- mineure température de travail.

100 ... 250

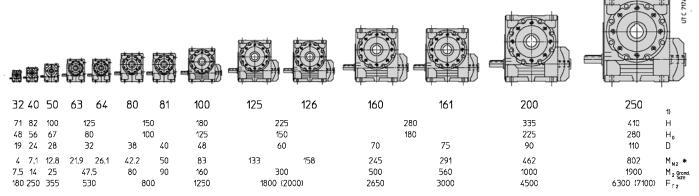

Possibilité d'appliquer des moteurs de taille importante et de transmettre des moments de torsion nominaux et maximums élevés Modularité poussée, au niveau des composants et du produit fini qui assure flexibilité de fabrication et de gestion Classe de qualité de fabrication élevée

Possibilité de réaliser des entraînements multiples et à vitesse synchrone

Disponibilité ample d'exécutions et d'accessoires: systèmes de fixation pendulaire, systèmes de calage mixte avec clavette et éléments de blocage (anneaux pour les tailles 32 ... 50, douille pour les tailles 63 ... 250), brides carrées pour servomoteurs et bague d'arrêt, jeu réduit, etc.

Entretien réduit

La conception moderne, les calculs analytiques effectués pour **chaque composant**, les usinages faits sur les machines les plus récentes, les contrôles systématiques sur les matériaux, les usinages et le montage assurent **rendements élevés**, **précision** de fonctionnement, **regularité** de mouvement et **silence**, **constance** de caractéristiques, **durée** et **fiabilité**, robustesse et capacité de supporter des surcharges et aptitude aux **services lourdes**, universalité et facilité d'application, large gamme de tailles et rapports, service excellent **typiques des réducteurs à vis de qualité construits en grande série.**



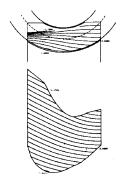
a - Réducteur

Particularités de la construction

Les principales caractéristiques sont

- fixation de type universal avec pattes incorporées à la carcasse (pattes inférieures, supérieures et verticales sur la face opposée au moteur pour tailles 32 ... 81; pattes inférieures et supérieures pour tailles 100 ... 250) et avec bride B14 (incorporée à la carcasse pour tailles 32 ... 50) sur les 2 faces de sortie de l'arbre lent creux. Bride B5 avec centrage «trou» qui peut être monté sur les brides B14 (voir chap. 5). La forme et la robustesse de la carcasse permettent des intéressants systèmes de fixation pendulaire;
- espacement rapproché des tailles (10 tailles dont 4 sont doubles avec entre-axes final 32 ... 250) et des performances; les tailles doubles sont obtenues avec la même carcasse et beaucoup de composants en commun;
- structure du réducteur dimensionnée pour recevoir tant pour MR V que pour MR IV des moteurs de tailles importantes et pour transmettre les moments de torsion nominaux élevés qui sont possibles avec l'engrenage à vis aux basses vitesses de sortie;

- * relativo a n_1 = 1 400 min⁻¹ e al rapporto di trasmissione indicato nel diagramma. 1) H_1 H_0 altezza d'asse; D Ø estremità d'albero lento [mm]; $M_{\rm N2}$: $M_{\rm 2Grand.}$ momento torcente [daN m]; $F_{\rm r2}$ carico radiale [daN]
- motoréducteurs tailles 40 ... 126 avec pré-train d'engrenages formé par 2 engrenages cylindriques coaxiaux pour avoir des rapports de transmission élevés — reversibles et non — avec moteur normalisé (63 ... 112) de façon compacte et économique;
- normalement, les motoréducteurs MR V tailles 32, 40 (avec tailles moteur 63 et 71), 50 (avec tailles moteurs 71 et 80) et 63 ... 81 (avec tailles moteurs 80 et 90) ont la bride moteur **incorporée** à la carcasse;
- arbre lent creux avec rainure de clavette et (tailles 63 ... 250) rainures du circlip d'extraction: en fonte sphéroïdale (grise pour tailles 32 et 40) incorporé à la roue à vis (tailles 32 ... 161) ou en acier (tailles 200 et 250); arbre lent normal (sortant à droite ou à gauche) ou à double sortie (voir chap. 5).
- pour les réducteurs: côté entrée avec plan (R V) ou bride (R IV) usinés et avec trous; extremité de vis avec clavette et extrémité de vis réduite (il s'agit de la même extremité de vis utilisée pour R IV, MR IV, MR 2ÍV, MR V 160 ... 250 avec accouplement) avec rainure pour circlip;
- motoréducteurs: moteur normalisé selon IEC calé directement dans la vis (MR V), pour les tailles moteur 200 ... 250 système de calage patenté pour faciliter le montage et le démontage et éviter l'oxydation de contact; moleur normalisé avec le pignon monté directement sur le bout d'arbre (MR IV. MR 2IV):
- ventilation forcée (tailles 100 ... 250); conque de façon à disposer de la vis à double sortie en enlevant simplement le disque central du couvre-ventilateur; pour MR V 81 avec moteur 100 et 112, ventilateur incorporé dans la bride de fixation du moteur;
- roulements de la vis: roulement à deux rangées de billes à contact oblique plus un à billes (taille 32); à rouleaux coniques opposés (tailles 40 ... 161); à rouleaux coniques accouplés plus un à billes (tailles 200 et 250);
- roulements de la roue à vis: à billes (tailles 32 ... 160); à rouleaux coniques (tailles 161 ... 250);
- carcasse en fonte monobloc 200 UNI ISO 185 avec nervures transversales de renforcement et grande capacité d'huile;
- lubrification à bain d'huile avec huile synthétique (chap. 16) pour lubrification «longue durée» réducteurs avec un bouchon (tailles 32 ... 64) ou deux bouchons (tailles 80 et 81) déjà fournis plein d'huile; avec bouchon de remplissage à clapet, vidange et niveau (tailles 100 ... 250) fournis sans huile; étanchéité;.
- peinture: protection extérieure à poudre époxy (tailles 32 ... 81) ou à email bicomposantà l'eau à base de résines acryliques-polyuréthaniques (tailles 100 ... 250) résistant aux agents atmosfériques et aggresifs (classe de corrosivité C3 ISO 12944-2); finitions possibles seulement avec des produits bicomposant après dégraissage et sablage à sec; couleur bleue RAL 5010 DIN 1843, autres couleurs et/ou cycles de peinture sur demande); protection intérieure à peinture à poudres epoxy (tailles 32 ... 81) bonne tenue aux huiles minérales ou à la peinture synthétique (tailles 100 ... 250) apte à resister aux huiles sinthétiques.
- possibilité de réaliser des groupes rèducteurs et motoréducteurs à rapport de transmission élévé avec differents types de train d'engrenages en fonction de l'encombrement, du rendement et de la vitesse de sortie requise.


2609-22.11 Rossi Série A

Train d'engrenages:

- à vis; à 1 engrenage cylindrique et vis; à 2 engrenages cylindriques et vis (seulement motoréducteur);
- engrenages à vis, avec rapports de transmission (i = 10 ... 63) entiers et égaux pour les différentes tailles; i = 7 pour MR V 32 ... 81;
- 10 tailles dont 4 sont doubles (normale et renforcée) avec entre-axes réduction finale selon la série R 10 (32 ... 250) pour un total de 14 tailles;
- rapports de transmission nominaux selon la série R 10 (10 ... 315; jusqu'à 16 000 pour les groupes combinés);
- vis cylindrique en acier 16CrNi4 ou 20 MnCr5 UNI 7846-78 (selon la taille) cémentée/trempée avec profil à développante (ZI) rectifié et superfini;
- roue à vis avec profil adéquatement conjugué à celui de la vis par optimisation de la fraise-mère, avec moyen en fonte sphéroïdale ou grise (selon la taille) et bronze au Ni CuSn12Ni2-B (EN1982-98) avec pureté élevée et teneur du phosphore controlée;
- engrenage cylindrique en acier 16CrNi4 UNI 7846-78 cémentée/trempée avec profil rectifié, denture hélicoïdale;
- capacité de charge du train d'engrenages calculée à rupture et usure; vérification de la capacité thermique.

Normes spécifiques:


- rapports de transmission nominaux et dimensions principales selon les nombres normaux UNI 2016 (DIN 323-74, NF X 01.001, BS 2045-65, ISO 3-73);
- crémaillère de référence selon BS 721-83; profil à développante (ZI) selon to UNI 4760/4-77 (DIN 3975-76), ISO/R 1122/2-69);
- hauteurs d'axe selon UNI 2946-68 (DIN 747-67, NF E 01.051, BS 5186-75, ISO 496-73);
- brides de fixation B14 et B5 (cette dernière avec centrage «trou») tirées de UNEL 13501-69 (DIN 42948-65, IEC 72.2);
- trous de fixation série moyenne selon UNI 1728-83 (DIN 69-71, NF E 27.040, BS 4186-67, ISO/R 273);
- bouts d'arbre cylindriques (longs ou courts) selon UNI ISO 775-88 (DIN 748, NF E 22.051, BS 4506-70, ISO/R775/88) avec trou taraudé en tête selon UNI 9321 (DIN 332 BI. 2-70, NF E 22.056), correspondance d-D exclue;
- clavettes parallèles UNI 6604-69 (DIN 6885 Bl. 1-68, NF E 27.656 et 22.175, BS 4235.1-72, ISO/R 773-69) sauf pour certains cas d'accouplement moteur/réducteur où elles sont surbaissées;
- positions de montage tirées de UNEL 05513-67 (DIN 42950-64, IEC 34.7);
- capacité de charge et rendement de l'engrenage à vis selon BS 721-83 intégrée avec ISO/CD 14521.

Lignes et zone de contact déterminées sur ordinateur pou contrôler le projet de chaque engrenage.

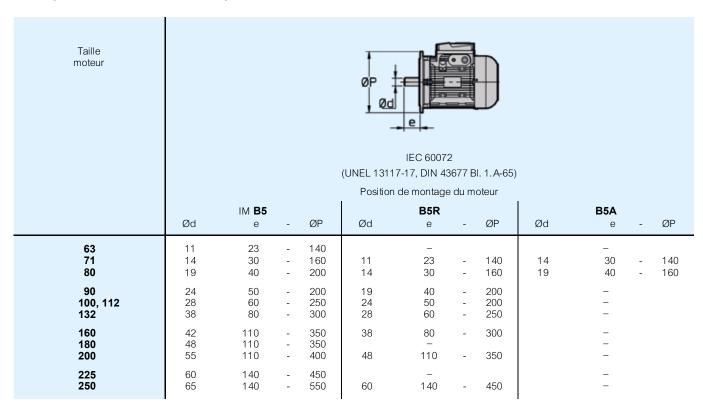
Couvre-ventilateur avec disque central enlevé pour pouvoir utiliser la vis à double sortie.

Réducteur exécution UO2B: extrémité de vis réduite (sert également à obtenit R IV, MR IV, MR 2IV, MR V160 ... 250 avec accouplement). Arbre lent à double sortie.

Caractéristiques, avantages et gamme

b - Moteur électrique

Les dimensions et les masses des motoréducteurs du présent catalogue (voir chap. 3.8 y 3.10) se refèrent aux moteurs HB et aux moteurs freins HBZ (cat. TX).


- moteur **normalisé IEC**;
- asynchrone triphasé, fermé, ventilé extérieurement, avec rotor à cage;
- simple polarité, fréquence 50 Hz, tension △ 230 V Y 400 V (taille ≤ 132), △ 400 V (taille ≥ 160);
- protection IP 55, classe d'isolement F, classe de surtempérature B;
- puissance pour service continu S1 (à l'exception des cas des tailles moteur avec puissance pas normalisée; voir la documentation spécifique) et rapportée à tension et fréquence nominales; température ambiante maximale de 40 °C et altitude de 1 000 m;
- capacité de supporter une ou plusieurs surcharges jusqu'à 1,6 fois la charge nominale pour une durée totale et maximale de 2 min par heure;
- moment de démarrage avec démarrage en direct, au moins 1,6 fois la charge nominale (normalement il est supérieur);
- position de montage B5 et dérivées, comme indiqué dans le tableau suivant,
- adéquat au fonctionnement avec convertisseur de fréquence (dimensionnement électromagnétique généreux, tôle magnétique à basses pertes, séparateurs de phase en tête, etc.);
- grande disponibilité d'éxécutions pour chaque exigence: volant, servoventilateur, servoventilateur et codeur etc.;

Particularités constructives du moteur frein HBZ

- construction particulièrement robuste afin de supporter les sollicitations de freinage; silence maximum;
- frein électromagnétique à ressort alimenté en c.c.; alimenté directement de la plaque à bornes; possibilité d'avoir une alimentation du frein séparée directement de la ligne de tension;
- moment de freinage **proportionné** au moment du moteur (normalement $M_i \approx 2 M_{y,i}$) et réglable en a joutant ou enlevant des couples de ressorts;
- possibilité de fréquence de démarrage élevée;
- rapidité et précision d'arrêt;
- -levier de déblocage manuel avec retour automatique (sur demande pour taille ≤160S); tige du levier démontable.

Pour les autres caractéristiques et détails voir documentation spécifique du cat. TX

Principales dimensions d'accouplement

2609-22.11 Série A **2009-22.11** Série A **2009-22.11** Série A

Caractéristiques, avantages et gamme

Service temporaire (S2) et service intermittent périodique (S3); services S4 ... S10

Pour les services de type S2 ... S10 il est possible d'augmenter la puissance du moteur selon le tableau ci-desosus; le moment de démarrage reste inchangé.

Service temporaire (S2). — Fonctionnement à charge constante pour une durée déterminée, inférieure à celle qui est nécessaire pour atteindre l'équilibre thermique, suivi d'un temps de repos dont la durée est suffisante pour rétablir la température ambiante dans le moteur.

Service intermittent périodique (S3). — Fonctionnement selon une série de cycles identiques, comprenant chacun un temps de fonctionnement en charge constante et un temps de repos. En outre, avec ce service, les pics de courant au démarrage ne doivent pas influencer de manière sensible l'échauffement du moteur.

Facteur de marche = $\frac{N}{N+R} \cdot 100\%$

où: N est le temps de fonctionnement à charge constante,

R est le temps de repos et $N + R \le 10$ min (si supérieur, nous consulter)

	Service		63 90	Taille moteur ¹⁾ 100 132	160 280
S2	durée du service	90 min 60 min 30 min 10 min	1 1 1,12 1,25	1 1,06 1,18 1,25	1,06 1,12 1,25 1,32
S 3	facteur de marche	60% 40% 25% 15%		1,12 1,18 1,25 1,32	
S4 S10				nous consulter	

¹⁾ Pour les moteurs tailles 90LC 4, 112MC 4, 132MC 4, nous consulter.

Fréquence 60 Hz

Jusqu'à la taille 132, les moteurs normaux bobinés à 50 Hz peuvent être alimentés à 60 Hz: la vitesse augmente alors du 20%. Si la tension d'alimentation correspond à celle du bobinage, la puissance ne varie pas, à condition qu'on accepte des surtempératures supérieures et que la demande de puissance même n'est pas excédée, cependant le moment de démarrage et maximal dimi nuent de 17%. Si la tension d'alimentation est supérieure de 20% à celle du bobinage, la puissance augmente de 20% tandis que le moment de démarrage et maximal ne varient pas.

Pour moteurs freins voir **documentation spécifique**.

A partir de la taille 160, il est conseillé que les moteurs – soit normaux que freins – soient bobinés expressément à 60 Hz, afin d'exploiter également la possibilité d'augmentation de la puissance de 20%.

Puissance établie à température ambiante élevée ou altitude élevée

Si le moteur doit fonctionner dans un environnement à température supérieure à 40 °C ou altitude sur le niveau de la mère supérieure à 1 000 m, il doit être déclassé en accord avec les tableaux:

Température ambiante [°C]		30	40	45	50	55	60
P/P _N [%]		106	100	96,5	93	90	86,5
Altitude s.n.m. [m]	1 000	1 500	2 000	2 500	3 000	3 500	4 000
P / P _N [%]	100	98	92	88	84	80	76

Normes spécifiques:

- puissances nominales et dimensions selon CENELEC HD 231 (IEC 72-1, DIN 42677, NF C51-120, BS 5000-10 et BS 4999-141) pour positions de montage IM B5, IM B14 et dérivées;
- caractéristiques nominales et de fonctionnement selon CENELEC EN 60034-1 (IEC 34-1, CEI EN 60034-1, DIN VDE 0530-1, NF C51-111, BS EN 60034-
- degrés de protection selon CENELEC EN 60034-5 (IEC 34-5, CEI 2-16, DIN EN 60034-5, NF C51-115, BS 4999-105);
- positions de montage selon CENELEC EN 60034-7 (IEC 34-7, CEI EN 60034-7, DIN IEC 34-7, NF C51-117, BS EN 60034-7);
- équilibrage et vitesse de vibration (degré de vibration normal N) selon CENELEC HD 53.14 S1 (IEC 34-14, ISO 2373 CEI 2-23, BS 4999-142); les moteurs sont équilibrés avec demi clavette inserée dans le bout d'arbre;
- refroidissement selon CENELEC EN 60034-6 (CEI 2-7, IEC 34-6): type standard IC 411; type IC 416 pour exécution spéciale avec servoventilateur axial.

2609-22.11 Série A

Moteurs asynchrones triphasés, moteurs freins

HE - HB Moteur asynchrone triphasé

HEZ - HBZ

Moteur frein asynchrone triphasé avec frein c.c.

HBF

Moteur frein asynchrone triphasé avec **frein c.a.**

HBV

Moteur frein asynchrone triphasé avec **frein de sécurité c.c.**

Moteurs asynchrones triphasés, moteurs freins

Moteur intégralement neuf qui partage avec les séries jumelles de moteurs freins (HEZ, HBZ, HBF, HBV) les mêmes paquets stators, les mêmes rotors, les mêmes carcasses, les mêmes brides, les mêmes performances et la majorité des solutions techniques.

Le dimensionnement électromagnétique généreux permet d'avoir des **élevées valeurs de rendement** en conformité aux directives différentes en ce qui concerne l'économie énergétique:

- Classe d'efficacité IE3 (ErP) pour HB et HE;
- Classe d'efficacité IE3 (ErP) pour HEZ, sur demande pour HBZ

La partie électrique (plaque à bornes, plaque d'identification, etc.) a été projétée pour être de série conforme aussi à NEMAMG1-12 pour l'universalité maximale et facilité d'application.

La **robustesse** et la **précision** de la construction méchanique, les **roulements généreux** et l'**ample gamme d'exécutions spéciales** disponibles au catalogue en font un moteur particulièrement **adéquat** à l'accouplement avec de **motoréducteurs**.

Grâce aux caractéristiques élevées de **silence de fonctionnement**, **progressivité** et **dynamique**, il est particulièrement approprié pour **accouplement avec motoréducteur** car **il minimise les surcharges dynamiques** dérivant des **phases de démarrage et freinage** (surtout en cas d'inversions de mouvement) en assurant une **valeur excellente de moment de freinage**.

L'excellente **progressivité d'intervention** - tant au démarrage qu'au freinage - est assurée par l'ancre du frein plus légère (comparée à celle à c.a. du HBF) et mions rapide dans l'impact et par une promptitude modérée propre des freins à c.c.

Gamme complète d'accessoires et d'exécutions spéciales pour satisfaire tous les champs d'applications possibles pour les motoréducteurs.

L'extrême réactivité typique des freins à c.a. et l'élevée capacité de travail en font un moteur frein particulièrement adéquat pour services lourds dans lesquels sont requis des freinages rapides et un nombre élevé d'interventions (ex.: levages avec fréquence élevée d'interventions qui normalement se vérifient pour taille >132, et/ou fonctionnement par impulsions).

Ses caractéristiques dynamiques très élevées (rapidité et fréquence d'intervention) déconseillent l'utilisation en accouplement avec le motoréducteur, surtout quand ces aspects ne soient indispensables pour l'application (pour éviter la génération de surcharges inutiles sur la transmission en général).

Gamme complète d'accessoires et d'exécutions spéciales pour satisfaire tous les champs d'applications possibles auxquelles peut être destiné le motoréducteur (en particulier pour HBF: IP 56, IP 65, odeur, servoventilateur, servoventilateur et codeur, deuxième bout d'arbre, moteur-convertisseur de fréquence intégré, etc.).

Economie maximale, encombrements très réduits et moment de freinage modéré apte pour l'accouplement avec motoréducteur et il peut être utilisé comme frein de sécurité ou de stationnement (ex. machines à tailler) et pour des interventions dans la rampe d'accélération et pendant le fonctionnement avec convertisseur de fréquence.

Le ventilateur standard en fonte offre un effet volant en augmentant la progressivité très élevée de démarrage et de freinage typiques du frein c.c. étant particulièrement **indiqué pour translations légères**¹⁾.

1) Groupe de mécanisme M 4 (max 180 dém./h) et fonctionnement à charge L 1 (léger) ou L 2 (modeéré selon ISO 4301/1, F.E.M./II 1997.

2609-22.11 Série A 2009-22.11

Symboles et unités de mesure

Symboles par ordre alphabétique, avec respectives unités de mesure, employés dans le catalogue et dans les formules.

Symbole	Expression		Unité de mesure		Notes
		Dans le	Dans les	formules	
		catalogue			
			Système Technique	Système SI ¹⁾	
	dimensions, cotes	mm	-	-	
а	accélération	-	m,	/s²	
d	diamètre	-	n	า	
f	fréquence	Hz	Н	Z	
fs	facteur de service				
<i>f</i> t	facteur thermique				
F	force	-	kgf	N ²⁾	1 kgf≈9,81 N≈0,981 daN
F _c	charge radiale	daN	-	-	
F	charge axiale	daN	-		
g	accélération de pesanteur	-	m,		val. norm. 9,81 m/s ²
G	poids (force poids)	-	kgf	N	
Gd ²	moment dynamique	-	kgf m ²	_	
i	rapport de transmission			$\frac{n_1}{n_2}$	i =
1	courant électrique	-	A	4	
J	moment d'inertie	kg m²	_	kg m²	
L	durée roulements	h	=	=	
m	masse	kg	kgf s²/m	kg ³⁾	
М	moment de torsion	daN m	kgf m	N m	1 kgf m ≈ 9,81 N m ≈ 0,981 daN m
n	vitesse angulaire	min ⁻¹	tours/min rev/min	-	1 min ⁻¹ ≈ 0,105 rad/s
Р	puissance	kW	CV	W	1 CV≈736 W≈0,736 kW
Pt	puissance thermique	kW	-	_	
r	rayon	-	n	า	
R	rapport de variation			$\frac{n_{2\mathrm{max}}}{n_{2\mathrm{min}}}$	R =
S	espace	-	n		
t	température Celsius	°C	-	_	
t	temps	S	5	<u></u>	
		min			1 min = 60 s
		h d			1 h = 60 min = 3 600 s 1 d = 24 h = 86 400 s
U	tension eléctrique	V	\	/	
V	vitesse	-	m		
W	travail, énergie	MJ	kgf m	J ⁴⁾	
Z	fréquence de démarrage	dém./h	-	-	
α	accélération angulaire	_	rac	1/s ²	
η	rendement		140		
ης	rendement statique				
μ	coefficient de frottement				
φ	angle plan	0	ra	d	1 giro = $2 \pi \text{ rad}$ 1 rev = $2 \pi \text{ rad}$
					$1^{\circ} = \frac{\pi}{180} \text{rad}$
ω	vitesse angulaire	-	-	rad/s	1 rad/s ≈ 9,55 min ⁻¹

Indices additionnelles et autres signes

Ind.	Expression
max	maximum
min	minimum
Ν	nominal
1	relatif à l'axe rapide (entrée)
2	relatif à l'axe lent (sortie)
÷	de à
≈	égal à environ
≥	supérieur ou égal à
≤	inférieur ou égal à

1) SI est le sigle du Système International des Unités, défini et approuvé par la Conférence Générale de Poids et Mesures comme unique système d'unité de mesure. Voir CNR UNI 10 003-84 (DIN 1 301-93 NF X 02.004, BS 5 555-93, ISO 1 000-92).

UNI: Ente Nazionale Italiano di Unificazione.

DIN: Deutscher Normenausschuss (DNA).

NF: Association Française de Normalisation (AFNOR).

BS: British Standards Institution (BSI).

ISO: International Organization for Standardization.


2) Le newton [N] est la force qui provoque à un corps de masse 1 kg l'accélération de 1 m/s².

3) Le kilogramme [kg] est la masse de l'échantillon conservé à Sèvres (c'est à dire de 1 dm³ d'eau distillée à 4 °C).

4) Le joule [J] est le travail effectué par la force de 1 N quand elle se désplace de 1 m.

Panoramique du produit

Index de section

3.1	Désignation	24
3.2	Puissance thermique	26
3.3	Facteur de service	28
3.4	Sélection	29
3.5	Puissances et moments de torsion nominaux	33
3.6	Exécutions, dimensions, positions de montage et quantités d'huile	40
3.7	Tableaux de sélection motoréducteurs	42
3.8	Exécutions, dimensions, positions de montage et quantités d'huiile	60
3.9	Groupes réducteurs et motoréducteurs	65
3.10	Dimensions des groups	68
3.11	Charges radiales sur le bout de l'arbre rapide	74
3.12	Charges radiales et axiales sur le bout de l'arbre lent	74

2609-22.11 Série A **Rossi** 2

Code de désignation

٧	8	0 l	J O	3 /	A - 24	4 × 200 -	- 25	V	5	HB3 9	0L4 230.400-50 B5	TB3
												POSITION BOÎTE A BORNE DU MOTEUR
												(v. page 25)
											DÉSIGNATION MOTEUR	
											(v. page 25)	
										VITESSE EN	ENTRÉE	
										(v. page 25)		_
										1ON DE MON1 ge 25)	ΓAGE	
								D 4 D D C			.N.I	
							_'	KAPPC	RIDE	TRANSMISSIO	IN .	
										ENT MOTEUR	IEC	
						$\emptyset d \times \emptyset$	P	(V. C	nap. 2b))		
					EXECU.	TION						
					A	normale						
					B C	extrémité vis a dou			rémité r	éduite		
					D	vis a dou	ble sorti	е				
				M	IODÈLE							
				3		tailles 32 8			-			
				2		tailles 100	250					
			F	POS	ITION AXE	ES						
				0	orthog	jonaux						
			FIXA									
			U		universelle	е						
		ΓAILLE										
	L	32 250				-l £ £: 1	. []					
	•)Z Z5(,	enu	e-axes rec	duction final	3 [111111]					
			NAGE	S								
		D'ENGRE										
'\	V IV	engrena 1 engra	age à v anage d	is cylin	drique et 1	1 à vis						
'\	v	engrena 1 engra	age à v anage d	is cylin	drique et 1 ndriques 6	1 à vis et 1 à vis						

motoréducteur

MR

Position de montage du réducteur

Les positions de montage des réducteurs et des motoréducteurs son indiquées aux chap. 3.6, 3.8 (la désignation de la position de ontage se réfère, pour plus de simplicité, seulement à la fixation par pattes, même si les réducteurs ont la fixation de type universel; ex.: fixation par bride B14 et dérivées; fixation par bride B5 et dérivées, voir chap. 5).

En absence d'exigences spécifiques, **il faut priviléger l'adoption de la position de montage B3** en étant la plus favorable en termes techniques et économiques (simplification maximum du système de lubrification, barbotage inférieur de l'huile, échauffement inférieur du réducteur, disponibilité plus grande des produits de stockage).

Vitesse en entrée

La désignation doit être complétée avec l'indication de la vitesse en entrée $n_{\rm s}$, si:

 $-n_1 > 1400 \text{ min}^{-1}$;

- pour les tailles réducteur 200 et 250 position de montage B7

Example

R V 250 UO2A / 50 n_1 = 560 min⁻¹, position de montage B7

Moteur

Lorsque le motoréducteur est fourni **equipé de série avec le moteur standard Rossi,** il faut compléter la désignation par la désignation du moteur (réf. cat. TX).

Example:

MR V 200 UO2A - 48 × 350 - 25

HB3 180M 4 400-50 B5

Dans le cas de moteur frein, faire précéder la taille moteur par les lettres HBZ (réf. cat. TX).

Example

MR \dot{V} 200 UO2A - 48 \times 350 - 25

HBZ 180M 4 400-50 B5

Lorsque le motoréduteur est fourni sans moteur, omettre la désignation du moteur et ajouter à la désignation «sans moteur».

Example:

MR V 200 UO2A - 48 × 350 - 25

sans moteur

Lorsque le moteur est fourni par l'Acheteur¹), a jouter à la désignation «moteur fourni par nos soins».

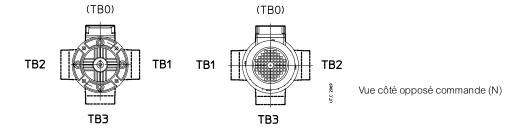
1) Le moteur, fourni par l'Acheteur, doit être unifié IEC avec les ajustements usinés dans la classe précise IEC 60072-1 et envoyé franco nos établissements pour être accouplé au réducteur.

Example:

MR V 200 UO2A - 48350 - 25

moteur fourni par nos soins

Position de la boîte à bornes du moteur


La désignation doit être complétée avec l'indication de la position de la boîte à bornes du moteur si différente de celle stasndard prévue (TB0; voir chap. 3.8 et schéma ci-dessous); l'entrée des câbles est aux soins de l'Acheteur.

Example:

MR V 200 UO2A - 48350 / 25

HB3 180M 4 400-50 B5 **TB3**

Vue côté commande (D)

Accessoires et exécutions spéciales

Lorsque le réducteur ou le motoréducteur est requis selon une exécution différente de celles indiquées ci-dessus, le préciser en toutes lettres (chap. 5).

Puissance thermique Pt [kW]

La puissance thermique nominale Ptw, indiquée en rouge dans les tableaux, c'est la puissance qui peut être appliquée à l'entrée du réducteur, sans supérer une température de l'huile d'environ 95 ° C¹) en présence des suivantes conditions opératives:

- vitesse en entrée $n_1 = 1400 \text{ min}^{-1}$;
- position de montage B3;
- service continu S1;
- température maximal ambiante 40 °C;
- altitude maximale 1 000 m s.n.m.;
- vitesse de l'air ≥ 1,25 m/s (valeur typique en présence d'un motoréducteur avec moteur autoventilé).

Pour les cas où dans les chap. 7 et 9 est indiquée la puissance thermique nominale P_{t_N} , il faut toujours vérifier que la puissance appliquée P_1 soit inférieure ou égale à la puissance thermique nominale du réducteur P_{t_N} multipliée par les coéfficients correctifs \mathbf{f}_2 , \mathbf{f}_3 , \mathbf{f}_4 , \mathbf{f}_5 (indiqués dans les tableaux suivants) qui considèrent toutes conditions opératives:

$$P_1 \leq Pt_N \cdot ft_2 \cdot ft_3 \cdot ft_4 \cdot ft_5$$

Lorsque la puissance appliquée n'est pas satisfaite, il faut considérer l'utilisation d'un lubrifiant spécial ou d'une unité de refroidissement avec échangeur de chaleur; nous consulter.

Il n'est pas nécessaire de tenir compte de la puissance thermique lorsque la durée maximale du service continu est de $1 \div 3$ h (des petites tailles de réducteurs aux grandes) suivie d'un temps de repos $(1 \div 3$ h environ) suffisant aà rétablir presque la température ambiante dans le réducteur. Pour température ambiante maximum supérieure à 50 °C, nous consulter.

Facteur thermique ft₂ en fonction de la température ambiante et du service

Température maximum ambiante [°C]	Service continu S1	Service à charge intermittente \$3 \$6 Facteur de marche pour 60 min de fonctionnement ⁷⁾				
L 13	0.	60	40	25	15	
50 40 30 20 10	0,8 1 1,18 1,32 1,5	0,95 1,18 1,4 1,6 1,8	1,06 1,32 1,6 1,8 2	1,18 1,5 1,8 2 2,24	1,32 1,7 2 2,24 2,5	

Facteur thermique $\boldsymbol{f}\!f_{\!\scriptscriptstyle 3}$ en fonction de la $\boldsymbol{position}$ de $\boldsymbol{montage}$

Train dlangs	ft ₃					
Train d'engr.	Position de montage B3, B8, V5, V6 B6, B7					
V IV, 2IV	1 1	0,9 1				

Facteur thermique \mathbf{f}_{4} en fonction de l'altitude

Altitude s.n.m [m]	ft ₄
<pre></pre>	1 0,95 0,9 0,85 0,8

Facteur thermique f_{s} en fonction de la vitesse de l'air sur la carcase

Vitesse de l'air m/s	Ambiante d'installation	ft ₅
< 0,63	très limité ou sans aucun mouvement de l'air ou à réducteur protégé	nous consulter
0,63	limité et avec des mouvements de l'air limités	0,71
1	ample et sans ventilation	0,9
1,25	ample et avec ventilation légère (ex.: motoréducteur avec moteur autoventilé)	1
2,5	ouvert et ventilé	1,18
4	fortes mouvements de l'air	1,32

¹⁾ Correspondant à une température moyenne de la surface extérieure de la carcasse d'environ 85 °C; localement cette température peut même atteindre celle de l'huile.

Correspondant a une temperature moyenne de la 27.
 (Durée du fonctionnement à charge / 60) · 100 [%].

Puissance thermique Pt [kW]

rédu	ctaur																			
	cteur	s et m	otoré	ducte	urs			tai	lle 32										tai	lle 4
_	40	12	46	U _{vis}	ا ء	20	40	EO	62	n _{vis} 1)	-	امدا	40	40	u.		00	46	E0	
0,82	0,67	-	_	0,44	_	_	_	_	_	1 400	1,14	0,93	0,84	0,77	0,6	0,55	0,49	-	_	6
_	_	_	_	-	_	_	_	_	_	900	0,94	0,76	0,7	0,64	0,5	0,46	0,45	_	_	_
_	_	_	_	_	_	_	_	_	_ _ _	560	0,87 0,8	0,7 0,64	0,63	0,58	0,41	0,41	_	_	_	_
	ļ							toil	. 50	450	_	_	_	_	0,38	_	_	- liet	- 62 62	3 6
				U _{vi}	s			lan	ie 30	n _{vis} 1)					u,	is		tan	103 00	٠, ٠
7	10	13	16	20	25	32	40	50	63	min ⁻¹	7 2 73	10	13	16	20	25	32	40	50	6
1,58	1,28	1,16	1,06 0,96	0,83 0,75	0,76	0,68 0,63	0,62		_ _	1 120	2,49	2,13	1,79	1,64	1,5	1,17	1,06	0,97	- -	-
	1,05 0,96	0,96	0,88 0,81	0,69 0,63	0,63	0,57	_		_ _	710 560	2,07	1,75	1,46	1,34	1,24	0,96	0,87	- -	_	<u>-</u>
1,1	0,89	0,82	0,75	0,58	0,54	_	_	1 1	_	450	1,76	1,48	1,24	1,14	1	0,82	_	_	_	- _
-	-	-	_	0,5	_	_	-	_ _	- 0 01					-	-	-	-	-	-	- - 10
				U _{vi}	s		ta	illes o	υ, οι	n _{vis} 1)					U vi	s			taille) I (
7	10	13	16	20	25	32	40	50	63	min ⁻¹	7	10	13	16	20	25	32	40	50	6
3,82	3,28	2,76	2,54	2,34	1,82	1,65	1,5	1,35	1,32 - -	1120	1 1 1	8,5	7,3	6,6	6,2	4,84	4,32	_	_	_ _
3,17	2,7	2,27	2,09	1,91	1,49	1,35	1,23	1,11	_	710		6,2	5,3	4,8	4,45	3,5	3,11	2,87	_	-
2,67	2,28	1,9	1,75	1,61	1,24	1,13	1,05	_	_	450	-	4,59	3,9	3,54	3,3	2,56	2,3	_	-	_
2,31	1,94	1,61	1,49	-	1,06	0,96	_	_ _	- -	280		3,55	3,01	2,76	2,57	1,99	1,79	_	_	_ _
1,98	1,69	1,4	_	_	- -	_	_	_ _	_	180	1 1	2,88	2,42	2,21	_	1,6	- -	_	_	_
_	_	-	_	-	_	-	-	_	-	112	-	2,25	1,9	-	-	-	-	-	-	- I
				,,			tailles	125	, 126	n 1)					u,	ris		tailles	160	, 16
7	10	13	16			32	40	50	63	vis min ⁻¹	7	10	13	16	20	25	32	40	50	6
_	15,2 13,1	14 11,9	12,2 10,3	11,2 9,5	10,4 8,8	8 6,7	7,1 6	6,6 5,6	5,9 -	1 400 1 120	- -	23,4 20,2		18,9 16,3	17,4 14,9	16,1 13,8	12,5 10,8	11,4 9,7	10,3 8,7	9,3 7,8
_	11,3	10,2 8.7	8,9 7.5	8,1	7,5	5,8 4.89	5,1 4.36	4,76 4.03	_	900 710	_	15	16,1 13,8	13,9 11,8	10,8	11,8 10	9,1 7,7	8,3 7	7,5 6,3	6,7 5,7
_	8,3 7,2	7,4 6,4	6,4 5,6	5,8 5,1	5,4 4,7	4,17 3,6	3,7 3,21	3,44 2,99	- -	560 450	_	12,8 11,1	11,8 10,2	10,1 8,7	9,2 8	8,5 7,4	6,6 5,7	6 5,1	5,4 4,67	4,8 4,1
_	6,2 5,5	5,6 4,99	4,81 4,27	4,4 3,92	4,11 3,64	3,12 2,77	2,81 2,49	_	_ _	355 280	_ _	9,6 8,5	8,8 7,8	6,7	6,9 6,1	6,4 5,6	4,81 4,32	4,44 3,94	4,05 3,6	3,6
_	4,91 4,42	4,46 3,98	3,81	3,49 3,11	3,24		2,23 2,01	_	_	180	_	6,9	6,3	5,4	4,86	5 4,49	3,48	3,16	2,89	_
_	3,9 3,48	3,51 3,14	3,01 2,68	2,75 -	_	1,97 1,75	_	_	_	112	_	5,4	4,92	4,16	3,81	_	2,71	2,5	2,32 -	_
-	3,14	2,85	_	_	-	_	_	-	-	90 2)	_	4,81	4,42	3,74	3,43	_	2,46	2,25	- toille	- - 21
				U vi	5			taille	200	n _{vio} 1)					u,	ris			taille	3 Z i
7	10	13	16	20	25	32	40	50	63	min ⁻¹	7	10	13	16	20	25	32	40	50	6
_		28,6	26,9	23,2	21,5	16,7	15	13,9	12,3	1 400 1 120	_	_	-	48,5 42,2	41,2	39,4	35,5 30,2	27,3 23,8		23, 19,
_	_	21,2	19,9	17	15,7	12,2	10,9	10	8,9	710	_	_	_	31,2	26,4	25	22,2	17,3	16	16, 14,
_	_	15,8	14,7	12,6	11,6	9	8	7,3	6,5	450	_	_	-	23,4	19,7	18,6	18,8 16,3	12,8	11,8	12, 10,
-	_	13,7 12	12,7 11,2	10,8 9,5	10 8,8	7,7 6,8	6,9 6,1	6,3 5,6	5,7 -	355 280	_ _	_	1 1	20,2	17 14,9	15,9 14	14 12,3	9,6	10,1	9, 8
_	-	9,6	9	7,6	7	5,4	4,85	4,52	_	180	_	_	1 1	14,2	11,8	11,1	9,8	7,7	7,1	6
_	_	8,4 7,5	7,8 7,1	6,6 5,9	6,1 5,5	4,74 4,17	4,25 3,83	3,93	_	140 112	_	_		12,5 11	10,3	9,8 8,6	_	6,7 5,9	6,2 5,6	_
-				F 0	4,93	3,79	3,46	_	_	90 ²⁾	_	_	_	9,9	8,3	7,8	i l	- 4	_	1 –
-	— morico	6,8	6,3	5,3		l		la volc	ır inférieure plus		l ternels	 r: D+	D+		l	l	.D+	5,4	5	ļ
	7 4,15 3,3,82 4,15 2,89 2,47 2,31 2,11 1,98 1,8 - - - - - - - - -	7 10 1,72 1,4 1,58 1,28 1,16 1,31 0,96 1,1 0,89 1,01 0,81 -	7 10 13 1,16 1,16 1,16 1,17 1,16 1,17 1,17 1,17 1,17 1,18 1,19 1,18 1,	7	10	0.82	0.82	0.82	0.82	1,000 1,0	1400 120	1,02	1,00	1,00	1,00	1	1	1400	180	1,00

Facteur de service fs

Le facteur de service fs tient compte des diverses conditions de fonctionnement (nature de la charge, durée, fréquence de démarrage, autres considérations) auxquelles peut être soumis le réducteur et dont il faut tenir compte dans les calculs de sélection et de vérification du réducteur même.

Les puissances et les moments de torsion indiqués dans le catalogue sont nominaux (c.á.d. valables pour fs = 1) pour les réducteurs, pour les motoréducteurs ils correspondent au fs indiqué.

Facteur de service en fonction de la nature de la charge et de la durée de fonctionnement (cette valeur doit être multipliée par celle du tableau ci-contre).

Facteur de service en fonction de la fréquence de démarrage rapportée à la nature de la charge.

Nature	e de la charge de la machine entraînée	Durée de fonctionnement [h]									
Réf.	Description	3 150 ≤ 2 h/d	6 300 2 ÷ 4 h/d	12 500 4 ÷ 8 h/d	25 000 8 ÷ 16 h/d	50 000 16 ÷ 24 h/d					
а	Uniforme	0,67	0,85	1	1,25	1,6					
b	Surcharges modérées (1,6 × normal)	0,85	1,06	1,25	1,05	1,25					
С	Fortes surcharges (2,5 × normal)	1	1,25	1,5	1,9	2,36					

Réf. charge		Fréquence d'arranque z [dém./h] 4 8 16 32 63 125 250 500													
	4	8	16	32	63	125	250	500							
а	1	1,06	1,12	1,18 1,12	1,25	1,32	1,4	1,5							
b	1	1	1,06	1,12	1,18	1,25	1,32	1,4							
С	1	1	1	1,06	1,12	1,18	1,25	1,32							

Précisions et considérations sur le facteur de service:

Les valeurs fs indiquées cidessus sont valables pour:

- moteur électrique avec rotor à cage, démarrage en direct jusqu'à 9,2 kW, étoile-triangle pour puissances supérieures; pour démarrage en direct au dessus de 9,2 kW ou pour moteurs freins, choisir fs en fonction d'une fréquence de démarrage double de la fréquence effective; pour moteurs à explosion il faut multiplier fs par 1,25 (multicylindre) ou 1,5 (monocylindre);
- durée maximale des surcharges 15 s, des démarrages 3 s; si ces temps sont supérieurs et/ou avec effet de choc considérable, nous consulter;
- un nombre entier de cycles de surcharge (ou de démarrage) complétés **pas exactement** à 1, 2, 3 ou 4 tours de l'arbre lent; si complétés **exactement**, considérer la surcharge comme agissant continuellement;
- dégré de fiabilité normal; si celui-ci est élevé (difficulté considérable d'entretien, grande importance du réducteur, dans le cycle de production, sécurité pour les personnes, etc.), multiplier fs par 1,25 ÷ 1,4.

L'utilisation de moteurs dont le moment de démarrge n'est pas supérieur au moment nominal (démarrage en étoile-triangle, certains types à courant continu et monophasés) et de systèmes déterminés d'accouplement du réducteur au moteur et à la machine entraînée accouplements élastiques, centrifuges, hydrauliques, accouplements de sécurité, embrayages, transmissions par courroie) influencent favorablement le facteur de service et permettent de le réduire dans certains cas de fonctionnement lourd; nous consulter, le cas échéant.

Sélection

a - Réducteur

Détermination de la taille du réducteur

- Disposer des données nécessaires: puissance P2 réquise à la sortie du réducteur, vitesses angulaires n2 et n1, conditions de fonctionnement (nature de la charge, durée, fréquence de démarrage z, autres considerations) en se référant au chap. 3.3.

- Déterminer le facteur de service fs en fonction des conditions de fonctionnement (chap. 3.3).
- Choisir la taille du réducteur (en même temps le train d'engrenages et et le rapport de transmission i) en fonction de n_2 , n_1 et d'une puissance P_{n_2}
- égale ou supérieure à $P_2 \cdot f$ s (chap. 3.5).

 Calculer la puissance P_1 requise à l'entrée du réducteur selon la formule $\frac{P_2}{\eta}$, où $\eta = \frac{P_{N2}}{P_{N1}}$ est le rendement du réducteur (chap. 3.5)

Lorsque, pour des raisons de normalisation du moteur, la puissance P, (on considère le rendement moteur - réducteur éventuel) appliquée à l'entrée du réducteur se révèle supérieure à la puissance requise, s'assurer que la puissance supplémentaire appliquée ne sera jamais requise et que la fréquence de démarrage z est assez basse pour ne pas influencer le facteur de service (chap. 3.3).

Sinon, pour la sélection multiplier la P_{N2} par le rapport P_1 appliquée

Les calculs peuvent être effectués en fonction des moments de torsion plutôt que des puissances: c'est même préférable pour des valeurs basses de n_g

Vérifications

- Vérifier les éventuelles charges radiales F_{r1} , F_{r2} et axiale F_{a2} selon les instructions et les valeurs figurant aux chap. 3.11 et 3.13.
- Si l'on dispose du diagramme de charge et/ou si l'on a des surcharges dues à des démarrages en pleine charge (surtout pour des inerties élevées et de bas rapports de transmission), des freinages, des chocs, des réducteurs irréversibles ou peu réversibles où la roue à vis devient motrice par suite des inerties de la machine entraînée, puissance appliquée supérieure à la puissance requise, à d'autres causes statistiques ou dynamiques — vérifier que le pic maximum du moment de torsion (chap. 3.13) reste toujours inférieur à M_{2max} (chap. 3.5); s'il est supérieur à cette valeur ou difficilement appréciable, dans les cas ci-dessus, prévoir des dispositifs de sécurité afin de ne jamais dépasser M_{2max}
- Lorsque la puissance thermique nominale Pt, en rouge dans le chap. 3.5 est indiquée pour le réducteur, 'vérifier que P, ≤ Pt (chap. 3.2).

b - Motoréducteur

Détermination de la taille du motoréducteur

- Disposer des données nécessaires: puissance P_{α} requise à la sortie du motoréducteur, vitesse angulaire n_{α} , conditions de fonctionnement (nature de la charge, durée, fréquence de démarrage z, autres considérations) en se référant au chap. 3.3.
- Déterminer le facteur de service fs en fonction des conditions de fonctionnement (chap. 3.3).
- Choisir la taille du motoréducteur en fonction de n_2 , fs, P_2 (chap. 3.7).

Lorsque, suite à la normalisation du moteur, la puissance P, disponible figurant sur le catalogue est nettement supérieure à la puissance requise, le motoréducteur peut être choisi en fonction d'un facteur de service inférieur

$$(fs \cdot \frac{P_2 \text{ requise}}{P_2 \text{ disponible}})$$

à condition que la puissance supplémentaire disponible ne soit jamais requise et que la fréquence de démarrage z soit assez basse pour ne pas influencer le facteur de service (chap. 3.3).

Les calculs peuvent être effectués en fonction des moments de torsion plutôt que des puissances: c'est même préférable pour des valeurs basses de na

Vérifications

- Vérifier l'eventuelle charge radiale F_{ρ} et axiale $F_{\rm a2}$ selon les instructions et les valeurs reportées au chap. 3.12.
- Vérifier, pour le moteur, la fréquence de démarrage z lorsque celle-ci est supérieure à la fréquence normalement admise, selon les instructions et les valeurs reportées au chap. 2b; normalement, ce côntrole n'est requis que pour les moteurs freins.
- Si l'on dispose du diagramme de charge et/ou si l'on a des surcharges dues à des démarrages en pleine charge (surtout pour des inerties élevées et de bas rapports de transmission), des freinages, des chocs, des réducteurs irréversibles ou peu réversibles où la roue à vis devient motrice par suite des inerties de la machine entraînée, puissance appliquée supérieure à la puissance requise, à d'autres causes statistiques ou dynamiques — vérifier que le pic maximum du moment de torsion (chap. 3.13) reste toujours inférieur à M_{2max} (chap. 3.5); s'il est supérieur à cette valeur ou difficilement appréciable, dans les cas ci-dessus, prévoir des dispositifs de sécurité afin de ne jamais dépasser M_{2max}
- Lorsque la puissance thermique nominale Pt, en rouge dans le chap. 3.7 est indiquée pour le réducteur, vérifier que P, ≤ Pt (chap. 3.2).
- En cas de montage de moteurs livrés par le client, il faut toujours vérifier que le moment fléchissant statique M_b géneré par le poids du moteur sur la contrbride de fixation du réducteur soit inférieure à la valeur admissible M_{bmax} indiquée dans le chap. 3.13. Dans les applications dynamiques où le motoréducteur est sujet à toutes translations, rotations ou oscillations, on pourrait avoir des charges supérieures à celles permises (ex.: fixations pendulaires): nous consulter pour l'étude de chaque cas spécifique.

2609-22.11 Série A

c - Groupes réducteurs et motoréducteurs

Ces groupes s'obtiennent en accouplant des réducteurs et/ou motoréducteurs normaux individuels

Détermination taille réducteur final

- Disposer des données nécessaires correspondant à la sortie du réducteur final: moment de torsion M₂ requis, vitesse angulaire n₂ conditions de fonctionnement (nature de la charge, durée, fréquence de démarrage z, autres considérations) en se référant au chap. 3.3.
- Déterminer le facteur de service fs en fonction des conditions de fonctionnement (chap. 3.3) et de n_2 (voir *, ** chap. 3.9).
- Àl'aide du chap. 3.9, tableau A, choisir, en fonction de n_2 et d'un moment de torsion M_{N2} supérieur ou égal à $M_2 \cdot f$ s, la taille réducteur final ainsi que le rendement η correspondant (considérer la valeur indiquée pour η^2 comme valable même lorsque le train d'ngrenages du réducteur final est IV). Si fs < 1 vérifier que $M_2 \in M_2$ Taille.

Détermination du type de groupe

 Àl'aide du chap. 3.9, tableau B, choisir, en fonction de la taille du réducteur final ainsi que du type de groupe choisi, la référence base du réducteur final, le type et la taille du réducteur ou du motoréducteur initial.

Pour choisir le type de groupe, se servir des schémas du tableau B et se rappeler que:

réducteur. permet une plus grande flexibilité d'emploi; les sollicitations peuvent être inférieures au démarrage et en cas de fonctionnement lourd grâce à la possibilité de placer entre le moteur et le réducteur: des accouplements (élastiques, centrifuges, hydrauliques, de sécurité, embrayages), des transmissions par courroie, etc.;

motoréducteur: permet d'obtenir une motorisation plus compacte et économique par rapport au même groupe réducteur;

groupes **RV** + RV ou MRV; **RV** + RIV ou MRIV: les axes d'entrée et de sortie peuvent être parallèles ou orthogonaux, l'encombrement est limité surtout dans la direction perpendiculaire à l'axe lent; ils sont normalement irréversibles; les deux derniers types de groupes permettent des rapports de transmission supérieurs et, à parité de rapport de transmission, présentent un rendement supérieur aux deux premiers;

groupes MR V + R 2I, 3I ou MR 2I, 3I: les axes d'entrée et de sortie sont orthogonaux, l'encombrement est très limité dans la direction de l'axe lent, les rendements sont élevés:

groupes **MR IV** + R 2l, 3l ou MR 2l, 3l: comme ci-dessus mais ils permettent des rapports de transmission supérieurs, l'encombrement du réducteur ou du motoréducteur initial reste compris entre les plans tracés par les pattes de fixation.

Sélection du réducteur ou du motoréducteur initial

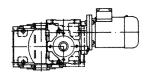
- Calculer la vitesse angulaire n_o et la puissance P_o requise à la sortie du réducteur ou du motoréducteur initial par les formules:

$$n_2$$
 initial = n_2 final · i final

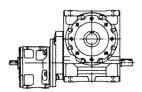
$$P_2$$
 initial = $\frac{M_2 \text{ final} \cdot n_2 \text{ final}}{955 \cdot \eta \text{ final}}$ [kW]

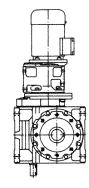
- Dans le cas d'un réducteur, disposer de la vitesse angulaire n, à l'entrée du réducteur initial.
- Choisir le réducteur ou le motoréducteur initial, comme indiqué au chap. 3.4, paragraphe a) ou b) du présent catalogue (pour les réducteurs ou motoréducteurs à vis), ou du catalogue E (pour les réducteurs et motoréducteurs coaxiaux), en se rappellant que la taille à déjà été dèterminée (elle doit rester telle quelle pour des raisons d'accouplement) et qu'il n'est pas nécessaire de contrôler le facteur de service.

Désignation pour la commande


Pour commander le groupe, il faut désigner **séparément** les réducteurs ou motoréducteurs individuels, comme énoncé au chap. 3.1, paragraphe a) ou b), du présent catalogue (pour le réducteur final et pour réducteur ou motoréducteur initial à vis) ou du catalogue E (pour réducteur ou motoréducteur initial coaxial), en se rappellant ce qui suit

- pour tous les groupes, placer la note accouplé à entre la désignation du réducteur final et la désignation du réducteur ou motoréducteur initial;
- pour les groupes R V + R V ou MR V et R V + R IV ou MR IV, choisir le réducteur ou motoréducteur initial et indiquer éventuellement la position d'accouplement (chap. 3.10);
- pour les groupes MR V + R 2I, 3I ou MR 2I, 3I et MR IV + R 2I, 3I ou MR 2I, 3I ajouter toujours à la désignation du réducteur final la note sans moteur et choisir le réducteur ou motoréducteur initial dans l'exécution bride B5 majorée (pour la taille 63 placer aussi la note Ø 28); en cas de réducteur ou motoréducteur initial tailles 32 ou 40 le choisir dans l'exécution avec bride FC1A;
- pour faciliter l'individuation de la position de montage du réducteur ou motoréducteur initial, voir aussi chap. 3.10.


Ex.: R V 100 UO2A/25 accouplé à R V 50 UO3A/32


R V 100 UO2A/25 position de montage V5 accouplé à MR V 50 UO3A - 14 160 – 50 pos. 3 HB 71 A 4 230.400 B5

MR V 200 UO2A – 48 350 – 32 sans moteur accouplé à R 2l 100 UC2A/29,3 bride B5 majorée

MR IV 200 UO2A – 138 300 – 81,8 sans moteur, position de montage B6, arbre lent à double sortie accouplé à MR 3I 80 UC2A – 19 200 – 49,8 position de montage V5 bride B5 majorée HB3 80A 4 230.400 B5

Considerations pour la sélection

Puissance du moteur

En considérant le rendement du réducteur et des autres transmissions eventuelles, la puissance du moteur doit être la plus proche possible de la puissance requise par la machine entraînée. Par conséquent elle doit être déterminée le plus exactement possible.

La puissance requise par la machine peut être calculée en tenant compte des puissances dues au travail à effectuer, aux frottements (frottements de glissement au départ, de glissement ou de roulement) et à l'inertie (spécialement lorsque la masse et/ou l'accélération ou la décélération sont importantes); elle peut être également déterminée expérimentalement par essais, par comparaison avec des applications existantes, par relevés de courant et de puissance électrique.

Un surdimensionnement du moteur engendre: un courant supérieur au démarrage, et donc des fusibles et des conducteurs plus grands; un coût d'exploitation supérieur car il influe négativement sur le facteur de puissance ($\cos \varphi$) et le rendement; une sollicitation supérieure des organes de transmission avec un danger de rupture car normalement ceux-ci sont dimensionnés par rapport à la puissance requise par la machine et non à celle du moteur

Toutes augmentations de puissance du moteur ne sont nécessaires qu'avec des valeurs élevées de la temperature ambiante, de l'altitude, de la fréquence de démarrage ou d'autres conditions particulières.

Entraînement de machines à énergie cinétique élévée

Avec des machines présentant des inerties et/ou des vitesses élevées, **éviter** d'utiliser des réducteurs ou des motoréducteurs **irréversibles** et choisir, pour le même rapport de transmission, le train d'engrenages à rendement supérieur (exemple IV, 2IV au lieu de V), car tout arrêt ou freinage pourrait provoquer des surcharges très importantes (cap. 3.13).

Entraînements à basse vitesse d'entrée (n_4 < 355 min⁻¹)

Choisir si possible les rapports de transmission suivants:

i = 20 pour les tailles 32 ... 50, *i* = 25 pour les tailles 63 ... 100, *i* = 32 pour les tailles 125 ... 200, *i* = 40 pour la taille 250. Ces rapports sont en effet ceux qui peuvent transmettre les moments de torsion les plus élevés (pour les performances, voir tableau A du chap. 3.9; pour tailles 32 et 40, nous consulter).

Vitesse d'entrée

Lorsque n_1 est supérieure à 1 400 min⁻¹, la **puissance** et le **moment de torsion** correspondant à un rapport de transmission donné changent selon le tableau. Dans ce cas, éviter les charges sur le bout d'arbre rapide.

 $\text{Lorsque } n_{_{1}} \text{ est variable, effectuer le choix sur la base de } n_{_{1} \text{ max}} \text{ et le contrôler \'egalement pour } n_{_{1} \text{ min}} \text{ et le contrôler \'egalement}$

Lorsque, entre le moteur et le réducteur, il y a une transmission par courroie, il est bon, avant de choisir, d'examiner différentes vitesses d'entrée n_1 , (le catalogue facilite cette tâche en présentant sur une seule colonne différentes vitesses d'entrée n_1 pour une vitesse de sortie donnée n_{N2}) pour trouver la meilleure solution sur le plan technique et économique.

Sauf exigences particulières, se rappeler de n'entrer jamais à un vitesse supérieure à 1 400 min⁻¹, profiter au contraire de la transmission, et entrer de préférence à une vitesse inférieure à 900 min⁻¹.

<i>n</i> ₁ min ⁻¹	$P_{_{\rm N2}}$	$M_{_{ m N2}}$
2 800 2 240 1 800	1,4 1,25 1,12	0,71 0,8 0,9
1 400	1	1

Fonctionnement à 60 Hz

Lorsque le moteur est alimenté à une fréquence de 60 Hz (chap. 2 b), les caractéristiques du motoréducteur varient de la façon suivante:

- La vitesse angulaire n_2 augmente de 20%.
- La puissance P₁ peut rester constante ou augmenter (chap. 2 b).
- Le moment de torsion M_2 et le facteur de service fs varient de la façon suivante:

$$M_{2 \text{ a } 60 \text{ Hz}} = M_{2 \text{ a } 50 \text{ Hz}} \cdot \frac{P_{1 \text{ a } 60 \text{ Hz}}}{1, 2 \cdot P_{1 \text{ a } 50 \text{ Hz}}}$$

$$f_{S_{a60\,Hz}} = f_{S_{a50\,Hz}} \cdot \frac{1,12 \cdot P_{1\,a\,50\,Hz}}{P_{1\,a\,60\,Hz}}$$

Puissances et moments de torsion nominaux (réducteurs)

									Taille	réducte	ur					No.	45	
n _{N2}	n ₁	Tr. €	engr. i	P [kW] M					Tame	reducte	ui							
			1)	[daN m] 2)	32	40	50	63	64	80	81	100	125	126	160	161	200	250
140	1 400	٧	10	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,57 0,48 3,29 _{5,9}	1,01 0,87 5,9 _{10,5}	1,79	3,02 <mark>2,3</mark> 2,68 18,3 33,2	3,59 <mark>2,3</mark> 3,19 21,7 36,1	5,5 3,6 4,96 33,9 63	6,6 3,6 5,9 40,3	10,6 9,5 65 ₁₂₀	16,7 15,1 103 ₁₈₈	19,8 15 18 123 204	29,9 23 27,3 186 342	35,6 23 32,5 222 394	-	-
125	1 250	٧	10	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,53 0,44 3,4 _{6,2}	0,94 0,8 6,1	1,66 1,3 1,44 11 19,9	2,82 <mark>2,2</mark> 2,5 19,1 35,1	3,36 <mark>2,2</mark> 2,97 22,7 38,1	5,2 3,4 4,65 35,6 65	6,2 3,4 5,5 42,3	9,9 8,9 68 124	15,7 14,2 109 195	18,7 14 16,9 129 212	28,1 22 25,6 196 357	33,5 22 30,5 233 410	_	-
112	1 400	٧	13	P _{N1} P _{N2} M _{N2} M _{2max}	0,47 0,39 3,47 _{6,2}	0,82 0,69 6,1 11,3	1,49 1,27 11,3 _{20,6}	2,44 2 2,12 18,8 35,1	2,9 2 2,52 22,3 38,1	4,55 <mark>3</mark> 3,99 35,4 66	5,4 3 4,75 42,1	9 8 71 128	14,4 13 115 203	17,2 14 15,4 137 220	26,6 22 24 213 380	31,6 22 28,6 254 413	47,9 33 43,6 386 716	-
	1 120	٧	10	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,49 0,41 3,51 _{6,4}	0,88 0,75 6,4 11,5	1,55 1,3 1,34 11,4 _{20,5}	2,64 <mark>2,1</mark> 2,33 19,9 ³⁷	3,14 <mark>2,1</mark> 2,77 23,6 40,2	4,91 <mark>3,3</mark> 4,37 37,3 ⁶⁷	5,8 3,3 5,2 44,3	9,3 8,4 71 ₁₂₈	14,9 13,4 115 ₂₀₃	17,7 13 16 136 220	26,5 20 24 205 371	31,5 20 28,6 244 427	_	ı
100	1 250	٧	13	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,43 0,36 3,58 _{6,4}	0,76 0,64 6,4 11,6	1,39 1,18 11,8 _{21,1}	2,28 1,9 1,97 19,6 36,9	2,72 1,9 2,35 23,3 40,1	4,25 <mark>2,9</mark> 3,71 36,8 69	5,1 2,9 4,41 43,8 75	8,5 7,5 74 135	13,6 12,1 121 ₂₁₉	16,1 13 14,4 143 238	25 20 22,6 225 412	29,8 20 26,9 267 448	45,4 31 41,2 409 748	_
	1 000	٧	10	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,45 0,38 3,62 _{6,6}	0,82 0,69 6,6 11,8	1,44 1,2 1,23 11,8 21	2,46 2 2,16 20,6 38,2	2,92 <mark>2</mark> 2,57 24,5 _{41,5}	4,57 <mark>3,1</mark> 4,05 38,7	5,4 3,1 4,82 46,1	8,7 7,8 74 134	14 12,6 120 214	16,7 12 15 143 233	24,7 19 22,4 214 393	29,4 19 26,7 255 ₄₅₂	_	l
90	1 400	٧	16	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,41 0,34 3,67 _{6,1}	0,73 0,61 6,6 11,1	1,3 1,1 12 20,2	2,14 1,8 1,83 20 35,9	2,55 1,8 2,18 23,8 39	4,03 <mark>2,8</mark> 3,49 38,1 68	4,79 <mark>2,8</mark> 4,15 45,3 73	7,5 6,6 72 127	12 10,6 116 206	14,3 12 12,6 138 224	22,5 19 20,1 219 403	26,8 19 23,9 261 437	41,3 31 37,3 407 705	74 49 67 732 1273
	1 120	v	13	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,4 0,33 3,7 _{6,6}	0,71 0,6 6,6 11,9	1,3 1,1 12,2 21,7	2,14 1,8 1,84 20,4 38,5	2,55 1,8 2,19 24,3 41,8	3,97 <mark>2,8</mark> 3,45 38,3 72	4,73 <mark>2,8</mark> 4,11 45,5 ⁷⁹	8 7 78 141	12,8 11,4 126 227	15,2 12 13,5 150 246	23,6 19 21,3 236 427	28,1 19 25,3 281 464	43,1 29 39 433 781	-
	900	٧	10	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,42 0,35 3,73 _{6,7}	0,77 0,65 6,9 12,1	1,35 1,15 12,2 _{21,5}	2,3 1,9 2,01 21,3 39,4	2,74 1,9 2,39 25,4 42,7	4,28 <mark>3</mark> 3,78 40,1	5,1 3 4,5 47,7 80	8,2 7,3 78 140	13,2 11,9 126 ₂₂₅	15,8 11 14,2 150 245	23,3 17 21 223 407	27,7 17 25 265 468	_	l
80	1 250	٧	16	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,38 0,31 3,81 _{6,4}	0,68 0,56 6,9 11,5	1,22 1,02 12,5 _{20,7}	2 1,7 20,8 37	2,38 1,7 2,03 24,8 40,2	3,78 <mark>2,7</mark> 3,26 39,8 ⁷⁰	4,5 2,7 3,88 47,4 ⁷⁶	7,1 6,2 75 136	11,3 9,9 121 ₂₁₃	13,4 11 11,8 144 232	21,2 17 18,8 230 418	25,2 17 22,4 274 454	38,8 29 35 428 736	69 45 63 770 1329
	1 000	V	13	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,37 0,31 3,82 _{6,8}	0,66 0,55 6,8 12,3	1,21 1,02 12,6 22,2	2 1,7 1,71 21,2 39,6	2,38 1,7 2,03 25,2 43	3,71 <mark>2,6</mark> 3,21 39,9	4,42 <mark>2,6</mark> 3,82 47,4 80	7,4 6,5 81 145	12 10,7 133 ₂₃₄	14,3 11 12,7 158 254	22,1 17 19,9 247 442	26,4 17 23,7 294 481	40,7 27 36,7 456 814	_
	800	V	10	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,39 0,32 3,85 7,1	0,71 0,59 7,1 12,7	1,25 1,06 12,6 22,8	2,12 1,85 22 _{40,4}	2,52 1,8 2,2 26,2 43,9	3,96 <mark>2,8</mark> 3,48 41,5 ⁷⁶	4,71 <mark>2,8</mark> 4,14 49,4 83	7,6 6,8 81 143	12,4 10 11,1 132 233	14,7 10 13,2 157 253	21,7 16 19,5 233 429	25,8 16 23,3 278 493	_	-
71	1 400	V	20	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,38 0,29 4,01 _{6,8}	0,67 0,52 7,1 12,2	1,18 <mark>0,9</mark> 0,94 12,8 _{22,3}	1,7 1,44 19,6 34,6	2,03 1,7 1,71 23,3 37,5	3,14 <mark>2,6</mark> 2,68 36,6 65	3,73 <mark>2,6</mark> 3,19 43,5 ⁷¹	6,2 5,3 73 126	10,1 8,9 121 ₂₀₉	12,1 10,6 144 227	18,6 16,4 224 ₄₀₁	22,1 17 19,5 266 436	36,2 27 32,2 439 744	62 41 56 759 1308
	1 120	v	16	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,36 0,29 3,95 _{6,6}	0,64 0,52 7,1	1,15 0,96 13,1 ^{21,2}	1,87 1,59 21,6 38,1	2,23 1,6 1,89 25,7 41,4	3,55 <mark>2,5</mark> 3,05 41,6 72	4,23 <mark>2,5</mark> 3,63 49,5 ⁷⁸	6,6 5,8 79 139	10,6 9,3 127 220	12,6 10 11,1 151 239	20 16 17,7 242 432	23,8 16 21,1 288 470	36,6 27 33 450 767	65 42 59 808 1384
	900	٧	13	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,35 0,29 3,93 _{6,9}	0,62 0,51 7 12,5	1,13 0,94 13 _{22,7}	1,87 1,59 22 39,7	2,23 1,6 1,89 26,1 43,2	3,49 <mark>2,5</mark> 3 41,4 ⁷⁵	4,15 <mark>2,5</mark> 3,57 49,3 81	7 6,1 84 149	11,4 10,1 139 242	13,5 10 12 165 263	20,8 16 18,7 257 457	24,8 16 22,2 306 497	38,6 25 34,7 479 847	_
	710	٧	10	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{2\text{max}} \end{array}$	0,36 0,3 3,98 ^{7,2}	0,65 0,54 7,3	1,16 0,97 13,1 23,3	1,95 1,69 22,8 _{41,3}	2,33 1,8 2,01 27,1 44,9	3,65 2,7 3,2 43 78	4,35 2,7 3,81 51 85	7,1 6,3 84 147	11,5 9,6 10,3 138 240	13,7 9,6 12,2 165 ₂₆₀	20,2 15 18,2 244 442	24 15 21,6 291 509	_	-

Les valeurs en rouge indiquent la puissance thermique nominale P_{N_0} (température ambiante 40 °C, service continu, voir chap. 3.2). Si n, supérieure à 1 400 min 1 ou inférieure à 355 min 1 voir chap. 3.4 et page 33.

1) Pour N_0 la valeur indiquée est la valeur nominale. Pour les rapports effectifs, voir page 33.

2) N_{2max} constitue le pic maximum du moment de torsion que le réducteur peut supporter.

Puissances et moments de torsion nominaux (réducteurs)

2609-22.11

		Tr. engr.	P [kW]					Taille	réducte	eur							
n _{N2} mi	n ₁ in ⁻¹ 	i 1)	M [daN m]	32	40	50	63	64	80	81	100	125	126	160	161	200	250
63	1 250	V 20	P _{N1} P _{N2} M _{N2} M _{2max}	0,35 0,27 4,15 6,9	0,63 0,49 7,4 12,7	1,1 0,9 0,87 13,4 22,8	1,59 1,33 20,3 36,7	1,89 1,6 1,58 24,2 39,9	2,93 <mark>2,4</mark> 2,49 38 69	3,49 <mark>2,4</mark> 2,96 45,3 75	5,8 4,98 76 129	9,6 8,3 127 224	11,4 9,9 151 243	17,4 15,3 234 ₄₁₅	20,8 16 18,2 279 451	34,2 25 30,3 463 790	59 38 52 798 1366
	1 000	V 16	P _{N1} P _{N2} M _{N2} M _{2max}	0,33 0,27 4,08 _{6,8}	0,59 0,48 7,3 12,2	1,07 0,89 13,6 _{22,3}	1,75 1,47 22,4 39,2	2,08 1,6 1,75 26,7 42,6	3,31 <mark>2,4</mark> 2,82 43,2 74	3,93 <mark>2,4</mark> 3,36 51 80	6,2 5,4 82 145	10 8,7 133 ₂₂₈	11,8 <mark>9,6</mark> 10,3 158 ₂₄₇	18,7 15 16,5 253 463	22,3 15 19,7 301 ₅₀₃	34,5 25 30,9 473 843	61 39 56 849
	800	V 13	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,32 0,26 4,07 7,2	0,57 0,47 7,3 12,9	1,04 0,86 13,4 _{23,9}	1,74 1,47 22,8 42	2,07 1,5 1,75 27,1 45,6	3,24 <mark>2,4</mark> 2,78 43,1	3,86 2,4 3,3 51 86	6,5 5,6 87 152	10,6 9,3 145 ₂₅₇	12,6 9,4 11,1 172 280	19,5 15 17,4 270 477	23,2 15 20,7 321 518	36,1 23 32,4 503 ₉₀₇	-
	630	V 10	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,33 0,27 4,09 7,5	0,6 0,5 7,5 13,6		1,8 1,55 23,5 43,5	2,14 1,7 1,85 28 47,2	3,37 <mark>2,6</mark> 2,94 44,5	4,01 <mark>2,6</mark> 3,5 53 87	6,5 5,8 87 ₁₅₀	10,7 9 9,5 144 247	12,7 9 11,3 171 268	18,8 14 16,8 255 463	22,3 14 20 303 533	_	-
56	1 400	V 25	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,3 0,23 3,89 _{6,6}	0,55 0,42 7,2 12,3		1,61 1,3 1,29 21,9 38,5	1,92 1,3 1,53 26,1 41,9	3,04 <mark>2,1</mark> 2,47 42,2 73	3,61 <mark>2,1</mark> 2,94 50 80	5,9 4,89 83 148	8,4 7,2 123 ₂₁₇	9,9 8,6 146 235	15,3 13,3 227 397	18,2 15,9 270 432	28,4 25 426 745	51 39 45,7 779 1341
	1 120	V 20	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,33 0,25 4,28 7,1	0,59 0,45 7,7 13,2	1,04 0,8 0,81 13,9 23,3	1,48 1,23 21 37,8	1,76 1,47 25 ₄₁	2,74 2,32 39,5 71	3,26 <mark>2,3</mark> 2,76 47	5,4 4,65 79 132	9 7,8 133 ₂₃₁	10,7 9,3 158 ₂₅₁	16,4 14,3 245 ₄₂₉	19,5 15 17,1 291 466	32,4 23 28,6 488 836	55 36 49,2 838 1424
	900	V 16	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,31 0,25 4,21 7,1	0,55 0,45 7,6 12,8	1 0,83 14 22,8	1,64 1,37 23,2 40,3	1,95 1,5 1,63 27,6 43,8	3,1 2,3 2,63 44,6 76	3,68 2,3 3,13 53 83	5,8 5 85 146	9,4 8,2 139 235	11,2 8,9 9,7 165 255	17,6 14 15,5 263 477	21 14 18,4 313 518	32,6 23 29,2 495 855	58 37 52 889 1498
	710	V 13	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,3 0,24 4,22 7,3	0,53 0,43 7,5 13,3	0,95 0,79 13,8 _{24,3}	1,61 1,36 23,7 42,9	1,92 1,5 1,61 28,2 46,6	3,01 <mark>2,3</mark> 2,56 44,8 82	3,58 2,3 3,05 53 89	6 5,2 91 ₁₅₆	9,8 8,6 151 ₂₆₅	11,7 <mark>8,7</mark> 10,3 180 ₂₈₇	18,2 14 16,2 283 494	21,7 14 19,3 337 528	33,7 21 30,2 528 929	-
	560	V 10	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,3 0,25 4,21 7,7	0,55 0,45 7,7 13,9	0,98 0,82 13,9 _{24,9}	1,66 1,43 24,3 44,3	1,97 1,6 1,7 29 48,2	3,11 <mark>2,5</mark> 2,7 46 82	3,7 2,5 3,21 55 89	6 5,3 90 ₁₅₃	9,9 8,3 8,8 149 253	11,8 <mark>8,3</mark> 10,4 178 ₂₇₅	17,5 13 15,6 266 476	20,8 13 18,6 316 548	_	-
50	1 250	V 25	P _{N1} P _{N2} M _{N2} M _{2max}	0,28 0,21 4,03 6,9	0,39	0,92 0,71 13,6 _{22,9}	1,51 1,2 1,19 22,8 40,9	1,79 1,2 1,42 27,1 44,5	2,85 1,9 2,3 44 76	3,39 1,9 2,74 52 82	5,5 4,55 87 ₁₅₃	7,8 6,7 128 223	9,3 8 152 ₂₄₃	14,2 12,4 237 410	17 14,8 282 446	26,9 23,7 452 ₇₈₃	48,4 <mark>37</mark> 43 821 1395
	1 000	V 20	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,31 0,23 4,43 7,4		0,97	1,38 1,14 21,8 38,8	1,64 1,36 25,9 42,1	2,55 2,15 41 73	3,04 <mark>2,2</mark> 2,55 48,8 80	5,1 4,33 83 140	8,4 7,3 139 ₂₃₈	10 8,6 165 ₂₅₈	15,3 13,4 255 ₄₅₈	18,3 14 15,9 304 498	30,5 21 26,8 512 869	52 33 46,3 884 1509
	800	V 16	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,29 0,23 4,35 7,3	0,51 0,41 7,8 13,2		1,51 1,26 24 42,3	1,8 1,4 1,5 28,6 46	2,86 <mark>2,2</mark> 2,42 46,2 81	3,41 <mark>2,2</mark> 2,88 55 88	5,4 4,66 89 152	8,8 7,6 145 ₂₄₅	10,4 8,2 9 172 266	16,4 13 14,4 275 491	19,6 13 17,1 327 534	30,3 21 27,1 517 876	54 34 48,8 932 1608
	630	V 13	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,27 0,22 4,34 ^{7,6}			1,49 1,25 24,6 ⁴⁵	1,78 1,4 1,48 29,2 48,9	2,78 <mark>2,2</mark> 2,36 46,5 85	3,31 <mark>2,2</mark> 2,81 55 92	5,6 4,79 94 ₁₆₁	9,1 8 157 272	10,8 <mark>8</mark> 9,5 187 295	17 13 15 296 513	20,2 13 17,9 352 575	31,5 20 28,2 555 951	-
	500	V 10	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,28 0,23 4,31 7,9	0,5 0,41 7,9 14,5		1,53 1,31 25 46,4	1,82 1,5 1,56 29,7 50	2,86 <mark>2,3</mark> 2,48 47,3 85	3,41 <mark>2,3</mark> 2,95 56 92	5,6 4,88 93 161	9,1 7,7 8,1 154 ₂₆₅	10,9 <mark>7,7</mark> 9,6 183 ²⁸⁷	16,3 12 14,5 276 490	19,4 12 17,2 329 563	_	
45	1 400	V 32	P _{N1} P _{N2} M _{N2} M _{2max}	0,24 0,17 3,81 _{6,4}	0,44 0,33 7,1		1,26 0,98 21,3 37,2	1,5 1,2 1,16 25,4 40,4	2,35 1,8 1,86 40,7	2,79 1,8 2,22 48,4 77	4,63 3,74 82 140	7,4 6,1 133 ₂₃₆	8,8 7,2 158 ₂₅₆	13,4 11,2 245 436	16 13 13,3 291 473	25 19 21,2 462 817	37,8 33,2 724 1287
	1 120	V 25	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,26 0,2 4,17 7,1	0,48 0,36 7,7 12,8		1,41 1,2 1,11 23,7 42,1	1,68 1,2 1,32 28,2 45,7	2,68 1,8 2,15 45,8 78	3,19 1,8 2,56 54 84	5,2 4,24 90 ₁₅₆	7,3 6,2 132 ₂₃₀	8,6 7,4 157 ₂₅₀	13,4 11,6 247 ₄₂₃	15,9 13,8 294 460	25,6 22 22,4 478 819	45,8 <mark>34</mark> 40,5 863 1449

Les valeurs en rouge indiquent la puissance thermique nominale Pt_N (température ambiante 40 °C, service continu, voir chap. 3.2). Si n_i supérieure à 1 400 min 1 ou inférieure à 355 min 1 voir chap. 3.4 et page 33. 1) Pour IV la valeur indiquée est la valeur nominale. Pour les rapports effectifs, voir page 33. 2) M_{2max} constitue le pic maximum du moment de torsion que le réducteur peut supporter.

								To:II-	réducte	ur						gar	
		Tr. engr.	P [kW]					Tallie	reducte	ur						8	
n _{N2}		i	M [daN m]														
		1)	2)	32	40	50	63	64	80	81	100	125	126	160	161	200	250
45	900	V 20	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,29 0,22 4,58 7,8	0,51 0,38 8,2 14,1	0,91 0,8 0,7 14,9	1,29 1,06 22,5 ^{39,6}	1,53 1,26 26,7 43	2,39 2 42,4 ⁷⁵	2,85 <mark>2,1</mark> 2,38 50 82	4,78 4,06 86 143	7,9 6,8 144 ₂₄₅	9,4 8,1 172 ₂₆₆	14,4 12,5 265 472	17,2 13 14,9 316 513	28,8 20 25,3 536 900	49,4 <mark>31</mark> 43,7 928 ₁₅₉₅
	710	V 16	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,26 0,21 4,5 7,5	0,47 0,37 8,1 13,6	0,86 0,7 15 _{24,3}	1,4 1,15 24,8 _{43,1}	1,66 1,3 1,37 29,6 46,9	2,65 <mark>2,1</mark> 2,22 47,8 83	3,15 <mark>2,1</mark> 2,64 57 90	5,1 4,32 93 157	8,2 7 151 ₂₅₆	9,7 7,5 8,4 180 278	15,3 12 13,3 287 505	18,2 12 15,9 342 549	28,2 20 25,1 539 897	51 31 45,4 977 1619
	560	V 13	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,25 0,2 4,46 7,8	0,45 0,36 8 14,2	0,8 0,66 14,6 _{25,9}	1,38 1,15 25,4 46,8	1,64 1,3 1,36 30,3 51	2,58 <mark>2,1</mark> 2,17 48,2 88	3,07 <mark>2,1</mark> 2,59 57 95	5,2 4,42 98 167	8,4 7,3 163 ₂₇₉	10 7,4 8,7 194 303	15,8 12 14 309 530	18,8 <mark>12</mark> 16,6 368 576	29,5 18 26,3 583 973	-
	450	V 10	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,26 0,21 4,42 8,1	0,47 0,38 8,1 14,7	0,84 0,69 14,7 _{26,5}	1,42 1,21 25,7 ^{47,2}	1,68 1,44 30,5 ₅₁	2,65 2,29 48,5 87	3,16 <mark>2,3</mark> 2,72 58 ₉₅	5,2 4,54 96 ₁₆₄	8,5 7,2 7,5 158 275	10,1 <mark>7,2</mark> 8,9 188 ₂₉₉	15,3 11 13,5 287 ₅₁₀	18,2 11 16,1 342 587	_	_
40	1 250	V 32	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,23 0,16 3,93 _{6,6}	0,41 0,3 7,3 12,4	0,71 0,53 13 22	1,17 0,9 22 39,4	1,39 1,1 1,07 26,2 42,8	2,19 1,7 1,73 42,2	2,61 1,7 2,06 50 80	4,33 3,48 85 143	7 5,7 139 ₂₄₃	8,3 6,8 165 ₂₆₄	12,6 10,5 256 ₄₅₀	15 11 12,4 304 489	23,6 18 19,9 487 850	35,7 31,2 763 ₁₃₃₅
	1 000	V 25	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,25 0,18 4,31 7,4	0,45 0,33 7,9 _{13,4}	0,81 0,61 14,6 24,2	1,32 1,1 1,03 24,5 43,9	1,57 1,1 1,22 29,2 47,6	2,5 1,7 1,99 47,6 81	2,98 1,7 2,37 57 88	4,82 3,92 94 162	6,7 5,7 137 240	8 6,8 163 ₂₆₁	12,5 10,7 256 ₄₃₆	14,8 12,8 305 ₄₇₃	24,1 20 21 501 863	43 31 37,9 904 1530
	800	V 20	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,27 0,2 4,7 7,9	0,47 0,35 8,4 14,3	0,84 0,65 15,4 _{25,9}	1,19 0,97 23,1 41,4	1,41 1,15 27,5 ₄₅	2,21 1,83 43,8 ⁷⁸	2,63 2 2,18 52 85	4,45 3,75 90 146	7,4 6,3 150 ₂₅₅	8,8 7,5 178 ₂₇₇	13,4 11,6 277 ₄₈₅	16 12 13,8 330 527	26,8 18 23,4 559 927	46,1 29 40,7 972 1653
	630	V 16	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,24 0,19 4,61 7,5	0,43 0,34 8,3 13,7	0,79 0,64 15,4 _{25,1}	1,28 1,05 25,6 _{45,1}	1,53 <mark>1,3</mark> 1,26 30,4 49	2,44 2 2,03 49,3 85	2,9 2 2,42 59 93	4,69 3,96 96 160	7,6 6,5 157 ₂₆₆	9 7 7,7 187 289	14,2 11 12,3 299 527	16,9 11 14,7 355 572	26,2 18 23,2 562 931	46,9 <mark>29</mark> 42 1018 ₁₆₈₃
	500	V 13	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,23 0,18 4,57 8,1	0,41 0,33 8,2 14,6	0,74 0,6 15 _{26,7}	1,28 1,05 26,2 ^{47,8}	1,52 <mark>1,3</mark> 1,25 31,2 ₅₂	2,39 <mark>2</mark> 2 49,7	2,84 2 2,38 59 97	4,79 4,07 101 172	7,8 6,7 168 290	9,3 6,9 8 199 315	14,7 11 12,9 321 552	17,5 11 15,4 382 600	27,5 17 24,4 606 1023	-
	400	V 10	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,24 0,19 4,55 8,3	0,43 0,35 8,3 14,9	0,77 0,63 15,1 _{26,9}	1,32 1,12 26,7 _{48,6}	1,54 1,31 31,2 ₅₃	2,44 2,09 50 90	2,89 <mark>2,2</mark> 2,48 59 ₉₈	4,8 4,16 99 171	7,8 6,8 163 ₂₈₄	9,3 6,7 8,1 194 309	14,2 10 12,5 299 523	16,9 10 14,9 356 602	_	-
35,5	1 400	V 40	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,19 0,13 3,6 _{6,1}	0,34 0,24 6,6 11,1	0,6 0,44 11,9 _{20,3}	1 0,76 20,7 36,3	1,19 0,9 24,6 39,4	1,86 1,44 39,2 69	2,21 <mark>1,7</mark> 1,71 46,7	3,64 2,88 79 133	5,7 4,58 125 227	6,8 5,4 149 ₂₄₇	10,9 8,9 243 ₄₃₂	12,9 10,6 289 469	19,8 16,5 449 817	35 27 29,4 802 1445
	1 120	V 32	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,21 0,15 4,05 6,9	0,38 0,28 7,5 _{12,8}	0,67 0,49 13,5 _{22,8}	1,1 0,83 22,8 40,4	1,3 1,1 0,99 27,1 43,9	2,06 1,6 1,61 43,8	2,45 1,6 1,91 52 83	4,07 3,24 88 146	6,6 5,3 145 ₂₅₄	7,8 6,3 173 ₂₇₆	11,8 9,8 267 464	14,1 11 11,6 318 504	22,4 17 18,8 512 881	33,8 29,4 802 ₁₃₈₅
	900	V 25	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,23 0,17 4,44 7,5	0,42 0,31 8,1 13,6	0,76 0,57 15,1 ²⁵	1,24 0,96 25,4 _{45,6}	1,48 1,1 1,14 30,2 49,5	2,35 1,7 1,86 49,3 84	2,8 1,7 2,21 59 92	4,51 3,64 97 ₁₆₈	6,3 5,3 141 ₂₅₀	7,5 6,3 168 ²⁷²	11,7 10 265 448	13,9 11,9 315 487	22,8 18 19,7 524 874	40,4 30 35,5 943 1612
	710	V 20	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,24 0,18 4,82 8	0,44 0,32 8,7 14,6	0,78 0,59 16 _{26,7}	1,09 0,88 23,8 42,1	1,29 1,05 28,3 _{45,8}	2,04 1,68 45,2 81	2,43 1,9 2 54 88	4,14 3,47 93 ₁₅₃	6,8 5,8 155 ₂₆₅	8,1 6,9 185 ₂₈₈	12,5 10,7 289 ₄₉₉	14,9 11 12,8 344 541	24,9 17 21,7 583 948	43,1 26 37,8 1018 1712
	560	V 16	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,22 0,17 4,73 7,7	0,39 0,31 8,5 14,1	0,72 0,58 15,8 _{25,8}	1,18 0,97 26,3 _{45,8}	1,41 1,15 31,3 _{49,8}	2,25 1,9 1,87 51 88	2,68 1,9 2,22 61 96	4,34 3,65 100 ₁₆₃	7 6 164 277	7,1 195 ₃₀₁	13,2 10 11,4 311 548	15,7 10 13,5 370 595	24,3 17 21,4 585 965	43,6 27 38,9 1061 1719
	450	V 13	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{2\text{max}} \end{array}$	0,21 0,17 4,68 8,2	0,38 0,31 8,4 15	0,69 0,56 15,4 _{27,4}	1,19 0,98 27 48,6	1,41 1,16 32,1 53	2,22 1,86 51 ₉₁	2,65 1,9 2,21 61 99	4,46 3,78 104 178	7,2 6,3 173 300	8,6 6,4 7,4 205 325	13,8 10 12,1 334 ₅₇₄	16,4 10 14,4 397 624	25,9 16 22,8 630 1043	_

Les valeurs en rouge indiquent la puissance thermique nominale $P_{\mathbf{i}_{N}}$ (température ambiante 40 °C, service continu, voir chap. 3.2). Si n, supérieure à 1 400 min¹ ou inférieure à 355 min¹ voir chap. 3.4 et page 33. 1) Pour \mathbf{IV} la valeur indiquée est la valeur nominale. Pour les rapports effectifs, voir page 33. 2) M_{2max} constitue le pic maximum du moment de torsion que le réducteur peut supporter.

Rossi

n _{N2}		Tr. engr.	P [kW]					Taille	réducte	eur							
1111		1)	[daN m] 2)	32	40	50	63	64	80	81	100	125	126	160	161	200	250
35,5	355	V 10	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,22 0,17 4,69 8,4	0,39 0,31 8,4 15,1	0,71 0,58 15,6 _{27,3}	1,22 1,03 27,7 49,9	1,4 1,19 31,9 ₅₄	2,24 1,91 51 93	2,65 <mark>2,1</mark> 2,26 61 101	4,41 3,81 102 ₁₇₄	7,2 6,2 168 293	8,5 6,2 7,4 200 318	13,1 9,6 11,5 311 542	15,6 9,6 13,7 370 623	_	_
31,5	1 250	V 40	P _{N1} P _{N2} M _{N2} M _{2max}	0,18 0,12 3,71 6,4	0,32 0,22 6,8 11,6	0,56 0,4 12,3	0,94 0,7 21,4 38,3	1,11 0,83 25,5 41,6	1,74 1,33 40,7	2,07 1,6 1,59 48,5	3,39 2,67 82 136	5,4 4,26 130 ₂₃₄	6,4 5,1 155 ₂₅₄	10,2 8,3 253 445	12,1 9,9 302 484	18,7 15,4 471 846	32,8 25 27,5 840 1501
	1 000	V 32	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,2 0,14 4,19 7,1	0,35 0,25 7,7 12,9	0,62 0,45 13,9 23,2	1,02 0,77 23,6 42	1,22 1 0,92 28 45,6	1,91 <mark>1,6</mark> 1,48 45,3 79	2,28 1,6 1,76 54 85	3,79 2,99 91 ₁₅₂	6,1 4,95 151 ₂₆₁	7,3 5,9 180 ₂₈₃	11,1 9,1 277 493	13,2 9,8 10,8 330 536	21 15 17,6 536 929	31,6 27,4 838 1458
	800	V 25	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,21 0,15 4,58 7,8	0,38 0,28 8,3 14,2	0,7 0,52 15,4 _{25,8}	1,15 0,88 26,2 46,6	1,37 1 1,04 31,2	2,17 1,6 1,7 51 86	2,59 1,6 2,02 60 94	4,17 3,34 100 ₁₆₉	5,8 4,88 146 ₂₅₇	6,9 5,8 173 ₂₇₉	10,7 9,2 273 467	12,8 10,9 325 ₅₀₈	21,2 17 18,3 546 908	37,9 27 33,1 988 1668
	630	V 20	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,22 0,16 4,96 8,3	0,4 0,3 9	0,72 0,54 16,5 ^{27,5}	0,99 0,8 24,3 43,9	1,18 0,95 28,9 47,7	1,87 1,53 46,5 83	2,23 1,8 1,83 55 90	3,83 3,19 97 156	6,3 5,3 161 ₂₇₂	7,5 6,3 6,3 192 295	11,6 9,9 300 ₅₁₉	13,8 10 11,8 357 564	23,1 16 20 606 983	40,3 24 35,3 1069 1778
	500	V 16	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,2 0,16 4,84 7,9	0,36 0,28 8,7 14,3	0,66 0,53 16,2 _{26,5}	1,09 0,88 26,9 47,2	1,29 1,05 32,1	2,07 1,71 52 91	2,46 1,8 2,03 62 99	4,01 3,35 102 171	6,5 5,5 169 ₂₈₄	7,8 6 6,6 201 308	12,3 9,4 10,5 322 561	14,6 9,4 12,5 383 610	22,4 16 19,7 601 984	40,3 25 35,7 1092 1754
	400	V 13	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,2 0,15 4,78 8,4	0,35 0,28 8,6 15	0,63 0,51 15,7 ^{27,8}	1,09 0,89 27,8 49,9	1,3 1,06 33 ₅₄	2,05 1,7 53 95	2,44 1,8 2,03 63 103	4,12 3,47 108 181	6,6 5,7 177 309	7,9 6 6,8 211 335	12,8 <mark>9,5</mark> 11,1 346 ₅₈₈	15,2 9,5 13,3 411 ₆₃₈	23,9 15 21 653 1063	-
28	1 400	IV 50	P _{N1} P _{N2} M _{N2} M _{2max}	0,2 0,14 5,1 8,5	0,34 0,26 8,9 14,5	0,63 0,49 16,6 ^{27,2}	1 0,79 27,6 48,4	1,2 0,94 32,8 53	1,91 1,54 53 93	2,28 1,7 1,83 64 101	3,72 3,03 105 173	6,2 5,1 174 289	7,4 5,6 6,1 208 314	11,5 8,7 9,6 334 575	13,7 <mark>8,7</mark> 11,5 397 ₆₂₄	20,8 15 17,8 618 1002	37,4 23 32,5 1125 1788
	1 400	V 50	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,14 0,1 3,24 5,2	0,26 0,18 6 10	0,47 0,32 11,1 _{19,6}	0,77 0,56 19,2 34,7	0,92 0,67 22,9 37,7	1,44 1,08 36,9 65	1,72 1,29 43,9	2,69 2,07 71 123	4,49 3,52 120 212	5,3 4,19 143 ₂₃₁	8,3 6,7 227 409	9,9 7,9 270 445	16 13 445 ₇₈₆	28,1 23,3 795 1408
	1 120	V 40	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,16 0,11 3,81 _{6,5}	0,3 0,2 7 11,8	0,52 0,37 12,7 ^{21,7}	0,88 0,65 22,1 39,2	1,04 0,77 26,3 42,6	1,63 1,24 42,2 72	1,94 1,5 1,47 50 79	3,18 2,48 85 139	5,1 3,98 136 ₂₄₁	6 4,74 162 ₂₆₁	9,6 7,7 264 ₄₅₈	11,4 9,7 9,2 315 498	17,6 15 14,5 494 876	30,9 24 25,8 879 1557
	900	V 32	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,18 0,13 4,32 7,3		0,58 0,42 14,3 _{23,6}	0,96 0,72 24,3 43,6	1,14 1 0,85 29 47,3	1,79 1,5 1,37 46,7 81	2,13 1,5 1,64 56 88	3,55 2,78 94 ₁₅₇	5,8 4,63 157 ₂₆₈	6,9 5,8 5,5 187 291	10,4 8,5 287 ₅₀₇	12,4 9,1 10,1 342 551	19,8 14 16,5 560 977	29,8 25,7 874 ₁₅₃₀
	710	V 25	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,2 0,14 4,73 8	0,35 0,25 8,5 14,4	0,64 0,47 15,8 _{26,5}	1,06 0,8 27 47,4	1,27 1 0,96 32,2	2,01 1,5 1,55 52 88	2,39 1,5 1,85 62 96	3,85 3,06 103 175	5,4 4,48 151 ₂₆₃	6,4 5,3 179 ₂₈₆	9,9 8,4 282 ₄₈₆	11,7 10 335 ₅₂₈	19,7 16 16,9 569 941	35,4 25 30,8 1036 1704
	560	V 20	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,21 0,15 5,1 8,5		0,67 0,5 17,1 _{28,2}	0,91 0,73 24,8 44,6	1,08 0,87 29,6 48,5	1,72 1,4 47,8 86		3,54 2,93 100 ₁₅₈	5,8 4,89 167 ₂₇₉	6,9 5,8 5,8 199 303		12,8 9,2 10,9 371 586	21,4 15 18,5 629 1017	37,7 23 32,9 1121 1842
	450	V 16	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,19 0,15 4,96 8	0,34 0,26 8,9 14,5	0,62 0,49 16,6 ^{27,2}	1,01 0,81 27,6 48,4	1,2 0,97 32,8 ₅₃	1,92 1,57 53 93	2,28 1,7 1,87 64 101	3,73 3,1 105 ₁₇₃	6,1 5,1 174 ₂₈₉	7,3 5,6 6,1 208 314	11,5 <mark>8,7</mark> 9,8 334 ₅₇₅	13,7 8,7 11,7 397 624	20,8 15 18,2 618 1002	37,4 23 33,1 1125 ₁₇₈₈
	355	V 13	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,18 0,14 4,89 8,5		0,58 0,46 16,1 _{28,2}	1,01 0,82 28,6 51	1,2 0,97 34 ₅₆	1,89 1,56 55 ₉₆	2,25 1,7 1,86 65 104	3,79 3,17 111 ₁₈₃	6,1 5,2 182 317	7,2 5,6 6,2 217 345	11,8 8,8 10,2 358 597	14 8,8 12,2 426 649	22,1 14 19,4 677 1081	_
25	1 250	IV 50	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,19 0,13 5,2 8,7	0,31 0,24 9,1 14,9	0,58 0,44 16,9 _{27,6}	0,92 0,72 28,1 49,1	1,09 0,86 33,4 ₅₃	1,75 1,4 55 ₉₅	2,09 1,7 1,67 65 103	3,42 2,77 108 ₁₇₈	5,7 4,68 178 ₂₉₈	6,8 5,2 5,6 212 323	10,7 8,1 8,9 345 ₅₈₈	12,7 <mark>8,1</mark> 10,6 410 ₆₃₈	19,1 14 16,3 634 1047	34,6 22 29,9 1161 1872

Les valeurs en rouge indiquent la puissance thermique nominale Pt_N (température ambiante 40 °C, service continu, voir chap. 3.2). Si n_i supérieure à 1 400 min 1 ou inférieure à 355 min 1 voir chap. 3.4 et page 33. 1) Pour IV la valeur indiquée est la valeur nominale. Pour les rapports effectifs, voir page 33. 2) M_{2max} constitue le pic maximum du moment de torsion que le réducteur peut supporter.

								Tailla	réducte	ur				C	CIE LE	quiç	D TO THE
		Tr. engr.	P [kW]					Tallie	reducte	ui				4			
n _{N2}	n ₁ n ⁻¹ 	i	M [daN m]	32	40	50	63	64	80	81	100	125	126	160	161	200	250
25	1 250	V 50	P _{N1} P _{N2} M _{N2} M _{2max}	0,13 0,09 3,29 5,2	0,24	0,43 0,3 11,4 19,8	0,72 0,52 19,7 35,5	0,85 0,61 23,5 38,6	1,34 1 38 67	1,6 1,18 45,3	2,5 1,91 73 127	4,17 3,25 124 225	4,96 3,86 148 244	7,8 6,2 237 428	9,3 7,4 282 465	15,2 12,3 469 840	26,6 22 840 1484
	1 000	V 40	P _{N1} P _{N2} M _{N2} M _{2max}	0,15 0,1 3,88 6,7	0,27	0,48 0,34 13	0,81 0,59 22,7	0,97 0,71 27 44,2	1,52 1,14 43,5	1,8 1,4 1,36 52		4,71 3,68 141 251	5,6 4,38 167 272	9 7,2 275 478	10,7 8,9 8,6 327 519		29 22 24,1 920 1610
	800	V 32	P _{N1} P _{N2} M _{N2} M _{2max}	0,17 0,12 4,46 7,5	0,3	0,54 0,39 14,7 _{24,6}	0,89 0,65 25 44,3	1,05 0,78 29,7 48,1	1,66 1,26 48,2	1,98 1,4 1,5 57	3,3 2,56 98 ₁₆₂	5,4 4,27 163 ₂₇₉	6,4 5,3 5,1 194 303	9,7 7,8 299 ₅₂₀	11,5 8,4 9,3 356 565	18,6 13 15,3 584 1010	27,5 23,6 901 1562
	630	V 25	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,18 0,13 4,84 8,1	0,32 0,23 8,8 14,8	0,59 0,43 16,3 _{27,3}	0,98 0,73 27,8 49,4	1,17 <mark>0,9</mark> 0,87 33,1 ₅₄	1,85 1,4 1,42 54 91	2,2 1,4 1,69 64 99	3,56 2,8 106 ₁₈₀	4,93 4,09 155 ₂₇₇	5,9 4,87 185 ₃₀₁	9,1 7,7 291 505	10,8 9,1 346 ₅₄₉	18,1 14 15,5 588 960	32,7 <mark>23</mark> 28,4 1076 1739
	500	V 20	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,19 0,14 5,2 8,7	0,34 0,25 9,5 15,7	0,62 0,46 17,5 _{28,6}	0,83 0,66 25,3 _{45,8}	0,99 0,79 30,1 49,7	1,58 1,28 48,8 88	1,88 1,52 58 ₉₆	3,26 2,69 103 165	5,4 4,47 171 ₂₈₉	6,4 5,4 5,3 203 314	10 8,4 322 ₅₅₂	11,9 8,5 10 383 600	19,8 13 17 650 1051	35,2 21 30,5 1165 1878
	400	V 16	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,17 0,13 5,1 8	0,31 0,24 9,1 14,9	0,56 0,44 16,9 ^{27,6}	0,91 0,73 28,1 49,1	1,09 0,87 33,4 53	1,75 1,43 55 ₉₅	2,08 1,7 1,7 65 103	3,41 2,82 108 178	5,6 4,67 178 298	6,6 5,2 5,6 212 323	10,6 <mark>8,1</mark> 9 345 588	12,6 <mark>8,1</mark> 10,7 410 ₆₃₈	19 14 16,6 634 1047	34,522 30,4 1161 ₁₈₇₂
22,4	1 400	IV 63	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,16 0,11 4,96 8,2	0,33 0,23 9,7 15,8	0,59 0,42 18 29	0,76 0,59 25,7 46,8	0,91 0,7 30,6 ⁵¹	1,45 1,15 49,8	1,73 1,36 59 ₉₈	3,02 2,42 105 ₁₆₈	5,1 4,11 175 ₂₉₇	6 5,1 4,89 208 323	9,3 7,7 333 ₅₆₅	11,1 8 9,1 396 614	18,5 13 15,5 671 1083	33,1 20 28 1211 1913
	1 400	V 63	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	_	0,18 0,12 4,96 7,5	0,34 0,23 9,7 14,9	0,58 0,4 17,2 29	0,69 0,48 20,5 32,5	1,1 0,79 33,9 ⁵⁹	1,31 0,94 40,3 ⁶⁷	2,11 1,57 67 ₁₁₇	3,44 2,61 112 201	4,1 3,11 134 ₂₁₉	6,2 4,84 208 386	7,4 5,8 248 ₄₁₉	11,9 9,5 406 ⁷³⁹	21,2 17,2 739 1339
	1 120	IV 50	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,17 0,12 5,3 8,9	0,29 0,22 9,2 15,1	0,53 0,41 17,3 _{27,9}	0,84 0,66 28,6 49,7	1 0,78 34 54	1,62 1,29 56 96	1,93 1,6 1,53 66 104	3,15 2,54 110 ₁₈₃	5,3 4,29 183 ₃₀₆	6,3 4,8 5,1 217 332	9,9 7,5 8,2 356 597	11,8 7,5 9,8 424 649	17,7 13 15 651 1064	32,2 20 27,7 1198 1903
	1 120	V 50	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,12 0,08 3,34 _{5,2}	0,22 0,15 6,3 10,1	0,41 0,28 11,7 19,9	0,67 0,47 20,2 36,4	0,79 0,56 24,1 39,5		1,49 1,09 46,6 ⁷⁵	2,33 1,76 75 132	3,89 3 128 231	4,63 3,57 152 ₂₅₁	7,4 5,8 247 446	8,8 6,9 294 ₄₈₄	14,4 11,6 494 869	25,3 20,8 887 1560
	900	V 40	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,14 0,09 3,95 _{6,8}	0,25 0,17 7,3 12,5	0,45 0,31 13,2 _{22,4}	0,76 0,55 23,3 41,9	0,9 0,65 27,7 45,5	1,42 1,05 44,8	1,69 1,4 1,26 53	2,76 2,12 90 148	4,41 3,42 145 ₂₅₃	5,3 4,07 173 ₂₇₅	8,4 6,7 284 498	10 8,3 8 339 540	15,5 13 12,5 532 966	27,4 20 22,6 960 1666
	710	V 32	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,16 0,11 4,6 7,7	0,28 0,19 8,3 13,9	0,5 0,35 15,2 ²⁵	0,82 0,6 25,6 45	0,97 0,71 30,5 48,9	1,54 1,15 49,7 87	1,83 1,4 1,37 59	3,06 2,35 101 ₁₆₇	5 3,93 169 ₂₈₉	6 4,9 4,68 201 314	9 7,2 312 ₅₃₄	10,7 7,7 8,6 371 579	17,3 12 14,2 610 1031	25,3 21,6 929 1593
	560	V 25	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,17 0,12 4,96 8,2	0,3 0,21 9	0,54 0,39 16,7 ²⁸	0,9 0,67 28,6 50	1,07 0,9 0,8 34 54	1,71 1,4 1,3 55 94	2,03 1,4 1,55 66 102	3,29 2,57 109 186	4,54 3,74 160 ₂₈₃	5,4 4,46 190 307	8,4 7 300 524	10 8,4 357 569	16,7 13 14,2 607 ₉₇₈	30,3 <mark>21</mark> 26,2 1117 1773
	450	V 20	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,18 0,13 5,3 8,9	0,32 0,23 9,7 15,8	0,58 0,42 18 29	0,76 0,61 25,7 46,8	0,91 0,72 30,6 51	1,46 1,17 49,8	1,73 1,4 59 98	3,03 2,48 105 ₁₆₈	4,98 4,12 175 297	5,9 4,9 208 323	9,3 7,8 333 ₅₆₅	11,1 8 9,3 396 614	18,5 13 15,8 671 1083	33,120 28,5 1211 1913
	355	V 16	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,16 0,12 5,2 8,1	0,28 0,21 9,2 15,1	0,51 0,4 17,3 _{27,9}	0,83 0,66 28,6 49,7	0,99 0,79 34 ₅₄	1,6 1,3 56 96	1,9 1,6 1,54 66 104	3,12 2,56 110 ₁₈₃	5,1 4,25 183 ₃₀₆	6,1 4,8 5,1 217 332	9,8 7,5 8,3 356 597	11,7 7,5 9,8 424 ₆₄₉	17,4 13 15,1 651 1064	31,7 20 27,8 1198 1903
18	1 400	IV 80	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,13 0,09 4,89 8	0,26 0,17 9,3 15,9	0,47 0,33 17,4 _{28,7}	0,76 0,55 29,7 53	0,91 0,65 35,3 57	1,46 1,07 58 99	1,73 <mark>1,2</mark> 1,27 69 108	2,84 2,13 116 196	3,95 3,15 168 299	4,7 3,75 200 324	7,2 5,8 315 547	8,5 6,9 375 ₅₉₄	14,2 12 11,7 634 1039	26 19 21,8 1179 1888

Les valeurs en rouge indiquent la puissance thermique nominale $P_{\mathbf{t}_{\mathbf{N}}}$ (température ambiante 40 °C, service continu, voir chap. 3.2). Si n, supérieure à 1 400 min¹ ou inférieure à 355 min¹ voir chap. 3.4 et page 33.

1) Pour \mathbf{IV} la valeur indiquée est la valeur nominale. Pour les rapports effectifs, voir page 33.

2) M_{2max} constitue le pic maximum du moment de torsion que le réducteur peut supporter.

Rossi

n _{N2}		Tr. engr.	P [kW]					Taille	e réducte	eur							
		1)	[daN m] 2)	32	40	50	63	64	80	81	100	125	126	160	161	200	250
18	1 120	IV 63	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,14 0,09 5,2 8,6	0,28 0,19 10,2 16,5	0,5 0,35 18,9 30,5	0,66 0,5 27,3 47,1	0,76 0,58 31,6 53	1,22 0,95 52 93	1,45 1,13 61 ₁₀₁	2,56 2,03 110 ₁₇₆	4,3 3,45 183 306	5,1 4,1 218 332	8 6,5 352 ₅₉₉	9,5 6,9 7,7 419 ₆₅₁	15,9 11 13,2 713 ₁₁₁₈	28,7 17 24 1301 2032
	1 120	V 63	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	_	0,15 0,09 5 7,6	0,29 0,18 9,8 15	0,5 0,34 18,1 29,2	0,58 0,39 21,1 32,7	0,95 0,66 35,7	1,13 0,79 42,4 67	1,83 1,32 71 118	2,97 2,21 119 ₂₁₈	3,54 2,63 141 ₂₃₆	5,4 4,12 221 407	6,4 4,9 263 442	10,5 8,2 441 ₇₈₉	18,8 15 808 1431
	900	IV 50	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,15 0,1 5,5 9	0,24 0,18 9,5 15,9	0,44 0,34 17,8 _{29,6}	0,71 0,55 29,5 53	0,84 0,65 34,9	1,37 1,07 58 103	1,63 1,28 69	2,69 2,14 116 ₁₉₆	4,45 3,6 190 328	5,3 4,3 4,28 227 357	8,5 6,7 7 377 643	10,1 6,7 8,3 448 699	15 11 12,7 682 1144	27,3 18 23,3 1256 ₂₀₅₄
	900	V 50	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,1 0,06 3,41 _{5,2}	0,19 0,12 6,6 10,2	0,35 0,23 12,3 ₂₀	0,57 0,4 21,1 38,6	0,68 0,47 25,1 42	1,09 0,78 41,4 74	1,3 0,93 49,3 80	2,02 1,49 79 136	3,38 2,56 136 242	4,03 3,05 162 ₂₆₃	6,4 5 265 469	7,7 5,9 315 ₅₀₉	12,9 10,2 543 ₉₁₅	22,8 19 18,5 980 1665
	710	V 40	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,12 0,08 4,13 6,8	0,21 0,14 7,5 13,1	0,38 0,26 13,8 23,7	0,64 0,45 24,4 43,2	0,76 0,54 29,1 46,9	1,21 0,88 47,5 83	1,44 1,05 57 90	2,36 1,77 95 ₁₅₈	3,83 2,91 157 ₂₇₃	4,56 3,46 186 ₂₉₆	7,3 5,7 308 522	8,7 7 6,8 366 567	13,4 11 10,7 578 1004	23,8 17 19,3 1040 ₁₈₃₀
	560	V 32	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,13 0,09 4,89 8	0,23 0,16 8,7 14,7	0,42 0,29 16 26,3	0,68 0,49 26,7 47,5	0,81 0,58 31,7	1,31 0,96 53 92	1,56 1,2 1,15 63 100	2,62 1,97 108 ₁₇₃	4,29 3,31 181 302	5,1 4,2 3,94 215 329	7,8 6,6 6,1 335 574	9,2 6,6 7,3 399 624	14,8 <mark>10</mark> 12 653 ₁₁₀₀	21,3 18 983 1680
	450	V 25	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,14 0,1 5,2 8,6	0,25 0,17 9,3 15,9	0,46 0,33 17,4 _{28,7}	0,77 0,56 29,7 ₅₃	0,91 0,67 35,3 ⁵⁷	1,46 1,09 58 99	1,74 1,2 1,3 69 108	2,84 2,18 116 196	3,89 3,16 168 299	4,62 3,76 200 324	7,2 5,9 315 547	8,5 7,1 375 594	14,2 <mark>12</mark> 12 634 1039	26 19 22,2 1179 1888
	355	V 20	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,15 0,1 5,5 9	0,27 0,19 10,2 16,5	0,49 0,35 18,9 _{30,5}	0,65 0,51 27,3 47,1	0,75 0,59 31,6 53	1,2 0,96 52 93	1,43 1,14 61 101	2,53 2,05 110 ₁₇₆	4,17 3,41 183 306	4,96 4,05 218 332	7,9 6,5 352 ₅₉₉	9,4 6,9 7,8 419 ₆₅₁	15,7 <mark>11</mark> 13,3 713 ₁₁₁₈	28,317 24,2 1301 ₂₀₃₂
14	1 400	IV 100	P _{N1} P _{N2} M _{N2} M _{2max}	0,1 0,06 4,25 6,9	0,2 0,13 9,1 15	0,36 0,24 16,6 _{27,6}	0,58 0,4 27,8 49,8	0,69 0,48 33 ₅₄	1,11 0,79 55 94	1,32 0,94 65 102	2,26 1,64 114 182	3,77 2,8 190 322	4,48 3,6 3,33 227 350	6,7 5,7 5,1 353 600	8 5,7 6,1 420 652	12,8 9 10 690 1138	18,2 14,9 1030 ₁₆₈₆
	1 120	IV 80	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,11 0,07 5,1 8,1	0,21 0,14 9,5 16,2	0,4 0,27 18,1 29,7	0,64 0,45 30,6 55	0,76 0,54 36,4 59	1,24 0,89 61 102	1,47 <mark>1,1</mark> 1,06 72	2,44 1,81 123 ₂₀₂	3,37 2,66 177 302	4,01 3,17 211 333	6,1 4,85 328 ₅₇₇	7,2 5,8 390 ₆₂₆	12 10 9,8 663 1084	22,1 16 18,3 1236 1997
	900	IV 63	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,12 0,08 5,4 8,8	0,23 0,16 10,5 17,4	0,42 0,29 19,5 31,7	0,56 0,42 28,4 48,3	0,64 0,49 32,8 54	1,04 0,8 54 97	1,23 0,94 64 105	2,16 1,69 114 188	3,63 2,88 190 328	4,32 3,42 227 356	6,8 5,5 370 ₆₄₃	8,1 6,1 6,5 440 699	13,5 9,5 11,1 745 1202	24,5 15 20,3 1368 2136
	900	V 63	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	_	0,13 0,08 5,1 7,6	0,24 0,15 9,9 ₁₅	0,43 0,28 19 _{29,3}	0,49 0,32 21,6 32,8	0,82 0,55 37,1	0,97 0,66 44,1 ⁶⁷	1,57 1,11 74 ₁₁₉	2,56 1,86 124 ₂₂₈	3,04 2,21 148 247	4,68 3,5 234 438	5,6 4,16 278 ₄₇₆	9,2 7,1 474 848	16,5 13 870 ₁₅₆₈
	710	IV 50	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,12 0,08 5,7 _{9,5}	0,2 0,15 9,8 16,5	0,37 0,27 18,4 30,5	0,6 0,46 31,2 ⁵⁶	0,68 0,52 35,6 60	1,12 0,87 60 107	1,33 1,04 71 ₁₁₆	2,22 1,75 120 ₂₀₅	3,68 2,94 198 351	4,38 3,5 235 381	7,1 5,9 5,8 395 689	8,5 5,9 6,9 470 748	12,4 <mark>10</mark> 10,3 707 1171	22,7 16 19,2 1309 2154
	710	V 50	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,09 0,05 3,53 _{5,3}	0,16 0,1 6,9 10,2	0,3 0,19 12,9 _{20,1}	0,48 0,33 22 39,3	0,57 0,39 26,1	0,92 0,64 43 76	1,09 0,76 51 83	1,72 1,24 83 144	2,87 2,13 143 ₂₆₀	3,41 2,53 170 ₂₈₂	5,6 4,22 284 ₅₀₄	6,6 5 338 547	11,1 8,6 581 ⁹⁷⁵	19,9 16 15,9 1068 1789
	560	V 40	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,1 0,06 4,25 _{6,9}	0,18 0,11 7,8 13,4	0,32 0,21 14,3 24,8	0,54 0,37 25,6 _{45,4}	0,64 0,45 30,4 49,3	1,01 0,72 49,3 85	1,21 0,86 59 93	1,99 1,46 100 ₁₆₂	3,29 2,45 167 ₂₈₅	3,91 2,91 199 ₃₁₀	6,3 4,87 332 ₅₆₀	7,5 6 5,8 395 608	11,7 <mark>9,3</mark> 9,2 625 1067	20,5 15 16,5 1125 1898
	450	V 32	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,11 0,07 5,1 8,1	0,2 0,13 9,1 15	0,36 0,24 16,6 27,6	0,58 0,41 27,8 49,8	0,69 0,49 33 54	1,12 0,81 55 94	1,33 1,1 0,96 65 102	2,26 1,67 114 182	3,7 2,8 190 322	4,41 3,6 3,34 227 350	6,7 5,7 5,2 353 600	8 5,7 6,2 420 652	12,8 9 10,2 690 1138	18,2 15,2 1030 ₁₆₈₆

Les valeurs en rouge indiquent la puissance thermique nominale Pt_N (température ambiante 40 °C, service continu, voir chap. 3.2). Si n_i supérieure à 1 400 min 1 ou inférieure à 355 min 1 voir chap. 3.4 et page 33.

1) Pour IV la valeur indiquée est la valeur nominale. Pour les rapports effectifs, voir page 33.

2) M_{2max} constitue le pic maximum du moment de torsion que le réducteur peut supporter.

n _{N2}	n ₁	Tr. engr.	P [kW]					Taille	e réducte	eur							
mi		1)	[daN m]	32	40	50	63	64	80	81	100	125	126	160	161	200	250
14	355	V 25	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,12 0,08 5,4 8,8	0,21 0,14 9,5 16,2	0,39 0,27 18,1 _{29,7}	0,63 0,45 30,6 ₅₅	0,75 0,54 36,4 59	1,22 0,9 61 102	1,46 1,1 1,07 72	2,42 1,82 123 202	3,27 2,63 177 302	3,89 3,13 211 333	6 4,88 328 ₅₇₇	7,1 5,8 390 ₆₂₆	11,9 <mark>10</mark> 9,9 663 ₁₀₈₄	21,8 16 18,4 1236 1997
11,2	1 400	IV 125	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,07 0,04 3,62 _{5,3}	0,15 0,09 8 13,4	0,27 0,17 14,7 25,9	0,46 0,31 26,5 47,5	0,54 0,36 31,6 52	0,85 0,58 51 90	1,02 0,7 60 97	1,69 1,19 103 171	2,87 2,05 174 301	3,42 2,44 208 327	5,6 4,11 356 ₅₈₃	6,6 5,1 4,89 423 634	10,1 <mark>8</mark> 7,7 663 1100	17,8 13 13,7 1190 ₂₀₁₃
	1 120	IV 100	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,08 0,05 4,34 _{6,9}		0,31 0,2 17,1 28,2	0,49 0,33 28,9 52	0,59 0,39 34,3 56	0,94 0,66 57 99	1,12 0,78 68 107	1,92 1,37 119	3,24 2,36 200 339	3,85 3,1 2,8 239 368	5,8 4,8 4,29 372 636	6,9 4,8 5,1 442 ₆₉₁	11 7,7 8,4 730 1201	15,6 12,6 1092 ₁₇₉₂
	900	IV 80	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,1 0,06 5,3 8,4	0,18 0,12 9,8 17	0,34 0,23 18,8 31,1	0,55 0,38 32 ₅₈	0,64 0,44 37,4 63	1,05 0,74 63 109	1,25 1,1 0,89 75 118	2,09 1,52 129 ₂₁₅	2,86 2,23 184 309	3,41 2,65 219 347	5,2 4,08 344 ₆₁₇	6,1 4,86 409 ₆₇₀	10,2 8,2 693 1149	18,7 14 15,3 1288 2094
	710	IV 63	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,1 0,06 5,6 _{9,3}		0,35 0,24 20,1 33,4	0,47 0,35 30 49,4	0,52 0,39 33,5 ₅₅	0,88 0,67 57 101	1,01 0,77 66 111	1,79 1,38 118 ₁₉₆	2,98 2,34 196 349	3,55 2,78 233 379	5,7 4,5 384 ₆₈₇	6,7 5,4 5,4 458 746	11,2 <mark>8,5</mark> 9,1 775 ₁₂₈₆	20,4 13 16,7 1423 2292
	710	V 63	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	_	.06 0,13 0,24 0,5 .6,6 10,8 20,1 0,3 .9,3 18,3 33,4 0,2 0,1 0,2 0,12 0,12 0,12 0,2 10,1 15,1 15,1 0,16 0,3 0,0 0,12 0,22 0,0			0,41 0,26 22,1 33	0,69 0,46 38,8 60	0,81 0,54 45,5 68	1,34 0,92 78 119	2,16 1,53 130 233	2,57 1,83 155 ₂₆₁	3,99 2,92 247 ₄₅₈	4,74 3,47 294 ₄₉₇	7,9 6 505 877	14,1 11 929 1625
	560	IV 50	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,1 0,07 5,8 9,9			0,5 0,38 32,9 ₅₉	0,55 0,42 36,2 62	0,94 0,72 63 113	1,1 0,85 73 122	1,82 1,42 124 217	3,02 2,39 203 366	3,6 2,84 242 397	5,9 4,74 410 735	7 5,4 5,6 488 798	10,2 8,5 732 1197	18,6 14 15,6 1350 2204
	560	V 50	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,07 0,04 3,62 _{5,3}	0,13 0,08 7 10,3	0,25 0,16 13,5 _{20,2}	0,4 0,27 22,8 39,5	0,48 0,32 27,1 44,2	0,76 0,52 44,4 80	0,91 0,62 53 87	1,46 1,03 88 149	2,44 1,77 151 277	2,9 2,1 179 300	4,73 3,52 300 ₅₂₆	5,6 4,19 357 ⁵⁷¹	9,5 7,3 621 1007	16,9 14 13,3 1135 1850
	450	V 40	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,08 0,05 4,34 6,9	0,15 0,09 8 13,4	0,27 0,17 14,7 25,9	0,46 0,31 26,5 47,5	0,55 0,37 31,6 52	0,85 0,6 51	1,02 0,71 60 97	1,69 1,22 103 171	2,82 2,05 174 301	3,36 2,44 208 327	5,6 4,19 356 ₅₈₃	6,6 5,1 4,99 423 634	10,1 8 7,8 663 1100	17,8 13 14 1190 2013
	355	V 32	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,1 0,06 5,3 8,4	0,17 0,11 9,3 15,5	0,3 0,2 17,1 28,2	0,49 0,34 28,9 52	0,58 0,4 34,3 56	0,93 0,66 57 99	1,11 0,79 68 107	1,9 1,38 119	3,14 2,33 200 339	3,73	5,7 4,32 372 636	6,8 4,8 5,1 442 691	10,9 7,7 8,5 730	15,4 12,7 1092 ₁₇₉₂
9	1 400	IV 160	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	_	0,11 0,07 7,2 10,3	0,22 0,13 13,9 20,2	0,35 0,22 23,8 39,6	0,41 0,26 28,1 44,3	0,64 0,42 45,8 81	0,77 0,5 54 91	1,24 0,84 91 156	2,13 1,48 157 ₂₈₄	2,54 1,76 187 308	4,03 2,88 312 558	4,8 3,43 371 606	8,2 6 653 1062	14,5 12 11 1189 1907
	1 120	IV 125	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,06 0,03 3,69 _{5,3}	0,12 0,08 8 13,4	0,23 0,14 15,2 _{26,3}	0,38 0,25 27 48,5	0,45 0,3 32,1 53	0,72 0,48 52 94	0,85 0,57 62 102	1,43 0,99 107 ₁₇₈	2,45 1,71 182 316	2,91 2,04 217 343	4,79 3,46 374 ₆₁₄	5,7 4,4 4,12 446 667	8,8 6,9 6,5 703	15,411 11,7 1270 2072
	900	IV 100	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,07 0,04 4,37 6,9	0,14 0,09 9,6 16,3	0,26 0,17 17,8 29,7	0,42 0,28 30,1 54	0,49 0,33 35,3 59	0,81 0,55 59 105	0,96 0,65 71 114	1,64 1,15 124 ₂₀₄	2,74 1,96 208 361	3,27 <mark>2,8</mark> 2,34 248 392	4,95 3,63 391 ₆₈₀	5,9 4,3 4,32 466 739	9,5 6,8 7,1 767 1258	13,3 10,6 1141 ₁₈₃₀
	710	IV 80	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,08 0,05 5,5 8,8	0,15 0,1 10,2 17,8	0,28 0,18 19,4 32,7	0,47 0,32 33,8 61	0,52 0,36 38 ₆₅	0,87 0,6 65 113	1,03 0,72 77 123	1,74 1,24 133 229	2,4 1,85 194 316	2,82 2,17 227 354	4,38 3,42 365 634	5,1 3,99 426 ₇₁₀	8,4 6,7 713 1227	15,4 12 12,4 1326 2240
	560	IV 63	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,08 0,05 5,7 _{9,5}	0,16 0,1 11,1 19,1	0,29 0,19 20,5 35	0,39 0,29 31,5 50	0,43 0,32 34,3 56	0,74 0,55 60 104	0,84 0,63 68 116	1,45 1,11 120 ₂₀₃	2,46 1,9 202 364	2,9 2,24 239 ₃₉₅	4,67 3,68 398 716	5,6 4,37 473 ⁷⁷⁸	9,3 7,6 7,4 803 1370	16,6 12 13,5 1457 2448
	560	V 63	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	_	0,09 0,05 5,2 7,7	0,16 0,1 10,4 15,2	0,3 0,19 20,2 _{29,6}	0,34 0,21 22,6 33,1	0,59 0,38 40,6 61	0,67 0,43 46,4 68	1,13 0,75 81 120	1,85 1,28 137 234	2,2 1,52 163 ₂₆₂	3,4 2,43 261 489	4,02 2,87 309 ₅₃₁	6,8 4,98 535 ₉₀₄	12,1 9,2 984 1720

Les valeurs en rouge indiquent la puissance thermique nominale P_{N_0} (température ambiante 40 °C, service continu, voir chap. 3.2). Si n, supérieure à 1 400 min⁻¹ ou inférieure à 355 min⁻¹ voir chap. 3.4 et page 33.

1) Pour N_0 la valeur indiquée est la valeur nominale. Pour les rapports effectifs, voir page 33.

2) N_{2max} constitue le pic maximum du moment de torsion que le réducteur peut supporter.

Rossi

	n₁	Tr. engr.	P [kW]					Taille	réducte	eur							
m	nin ⁻¹	1)	[daN m]	32	40	50	63	64	80	81	100	125	126	160	161	200	250
9	450	IV 50	P _{N1} P _{N2} M _{N2} M _{2max}	0,08 0,05 6 10,4	0,13 0,1 10,2 17,3	0,25 0,18 19,2 33,5	0,42 0,31 34 61	0,46 0,34 36,8 62	0,81 0,61 66 119	0,91 0,69 75 127	1,54 1,19 128 224	2,6 2,03 215 388	2,99 2,34 248 ₄₁₈	4,97 3,95 425 766	5,9 4,6 4,67 503 832	8,6 7,1 762 ₁₂₂₆	15,5 <mark>12</mark> 12,9 1392 ₂₂₈₁
	450	V 50	P _{N1} P _{N2} M _{N2} M _{2max}	0,06 0,03 3,69 _{5,3}	0,11 0,07 7,2 10,3	0,21 0,13 13,9 20,2	0,35 0,22 23,8 39,6	0,41 0,26 28,1 44,3	0,65 0,43 45,8 81	0,77 0,51 54 91	1,24 0,86 91 156	2,09 1,48 157 ₂₈₄	2,49 1,76 187 308	4,03 2,94 312 558	4,8 3,49 371 ₆₀₆	8,2 6,2 653 1062	14,5 <mark>12</mark> 11,2 1189 ₁₉₀₇
	355	V 40	P _{N1} P _{N2} M _{N2} M _{2max}	0,07 0,04 4,37 6,9	0,12 0,07 8 13,4	0,22 0,14 15,2 _{26,3}	0,38 0,25 27 48,5	0,45 0,3 32,1	0,71 0,49 52 94	0,84 0,58 62 102	1,41 1 107 178	2,37 1,69 182 316	2,82 2,02 217 343	4,72 3,48 374 ₆₁₄	5,6 4,4 4,14 446 667	8,6 6,9 6,5 703	15,2 11 11,8 1270 2072
7,1	1 400	IV 200	P _{N1} P _{N2} M _{N2} M _{2max}	_	0,07 0,04 5,4 7,7	0,14 0,08 10,6 15,2	0,25 0,15 20,6 29,6	0,28 0,17 23 33,1	0,5 0,31 42,2 61	0,56 0,35 47,3 68	1,34 0,92 128 212	2,18 1,53 213 376	2,59 1,82 253 409	4,04 2,91 406 725	4,8 3,9 3,47 483 787	7,8 6 5,8 802 1344	10,8 8,5 1181 1865
	1 120	IV 160	P _{N1} P _{N2} M _{N2} M _{2max}	_	0,1 0,06 7,3 10,3	0,18 0,11 14,3 _{20,3}	0,29 0,18 24,7 39,6	0,34 0,21 28,9 44,4	0,55 0,35 47,6 81	0,65 0,42 57 91	1,05 0,7 95 ₁₆₀	1,82 1,24 165 ₂₉₇	2,16 1,47 195 322	3,42 2,39 323 ₅₇₂	4,07 2,84 385 621	7 5 677 1089	12,3 <mark>10</mark> 9,1 1236 ₂₀₀₇
	900	IV 125	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,05 0,03 3,77 _{5,3}	0,11 0,06 8,3 13,7	0,19 0,12 15,4 26,9	0,33 0,21 28,5 51	0,38 0,24 32,4 55	0,61 0,4 54 ₉₇	0,72 0,47 64 106	1,2 0,82 110 ₁₈₆	2,07 1,42 188 337	2,46 1,69 223 366	4,06 2,88 388 ₆₅₅	4,83 3,9 3,43 462 712	7,6 6,1 5,5 748	13,4 9,6 9,9 1340 2220
	710	IV 100	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,05 0,03 4,49 7,1	0,12 0,07 9,8 16,7	0,22 0,14 18,4 30,6	0,36 0,23 31,7 57	0,41 0,26 36,1 61	0,66 0,44 61 109	0,79 0,53 73 119	1,36 0,93 128 ₂₁₂	2,25 1,58 213 376	2,68 1,88 253 409	4,12 2,97 406 725	4,9 3,9 3,54 483 787	7,9 6 5,9 802 1344	11 8,6 1181 ₁₈₆₅
	560	IV 80	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,06 0,04 5,6 9	0,12 0,08 10,4 18,3	0,23 0,15 19,8 34,2	0,39 0,26 34,9 63	0,43 0,29 38,8 66	0,72 0,49 66 119	0,84 0,58 78 129	1,45 1,02 138 ₂₃₈	1,99 1,51 201 322	2,29 1,74 232 361	3,64 2,81 380 647	4,19 3,23 437 724	6,9 5,4 734 1263	12,6 10,1 1362 ₂₃₈₆
	450	IV 63	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,07 0,04 5,8 9,8	0,13 0,09 11,5 19,6	0,24 0,16 21 36,6	0,33 0,24 32,5 52	0,35 0,26 34,6 58	0,63 0,47 63 106	0,71 0,53 71 119	1,22 0,92 124 ₂₀₈	2,11 1,61 214 385	2,41 1,84 244 413	3,95 3,07 414 ₇₄₆	4,66 3,62 488 810	7,8 6,1 826 1425	13,8 <mark>10</mark> 11,1 1491 ₂₆₀₅
	450	V 63	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	-	0,07 0,04 5,4 7,7	0,14 0,08 10,6 15,2	0,25 0,15 20,6 ^{29,6}	0,28 0,17 23 33,1	0,5 0,32 42,2 61	0,56 0,35 47,3 68	0,95 0,62 83 ₁₂₀	1,59 1,07 144 ₂₃₄	1,89 1,28 171 ₂₆₂	2,95 2,05 275 491	3,48 2,42 323 ₅₄₈	5,8 4,15 555 952	10,3 7,7 1030 ₁₇₆₉
	355	IV 50	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,07 0,04 6,1 10,6	0,11 0,08 10,4 17,7	0,2 0,15 19,6 34,3	0,35 0,26 35,6 64	0,37 0,27 37,4 ₆₄	0,66 0,5 68 123	0,75 0,56 77 130	1,25 0,96 131 ₂₃₅	2,14 1,66 222 400	2,45 1,89 254 ₄₂₃	4,1 3,22 440 809	4,79 3,77 515 ₈₇₅	7,1 5,8 786 1250	12,9 10,6 1448 ²³²⁹
	355	V 50	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,05 0,03 3,77 5,3	0,09 0,05 7,3 10,3	0,18 0,11 14,3 20,3	0,29 0,18 24,7 39,6	0,34 0,21 28,9 44,4	0,54 0,35 47,6 81	0,64 0,42 57 ₉₁	1,04 0,7 95 160	1,77 1,23 165 ²⁹⁷	2,09 1,45 195 322	3,37 2,4 323 ₅₇₂	4,02 2,86 385 621	6,9 5 677 1089	12,2 10 9,2 1236 2007
5,6	400	IV 250	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	-	-	_	-	_	_	_	0,98 0,65 114 ₁₉₃	1,67 1,12 195 351	1,98 1,33 230 381	3,28 2,29 398 ₆₉₆	3,91 2,72 474 756	6,2 4,45 775 1289	11 8,5 8 1400 2319
	1 120	IV 200	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	-	0,06 0,03 5,5 7,7	0,12 0,06 10,8 15,2	0,21 0,12 21 29,6	0,24 0,14 23,5 33,1	0,42 0,25 43,1 61	0,47 0,28 48,2 68	1,12 0,76 132 ₂₂₀	1,85 1,27 220 391	2,17 1,49 259 ₄₂₅	3,41 2,42 421 754	4,06 2,88 501 819	6,5 5,4 4,74 826 1430	9,1 7,1 1228 1948
	900	IV 160	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	-	0,08 0,05 7,5 10,5	0,15 0,09 14,7 _{20,7}	0,25 0,15 26,1 40,4	0,29 0,17 29,5 _{45,3}	0,47 0,29 49,5 83	0,55 0,34 58 93	0,89 0,58 97 ₁₆₃	1,59 1,06 175 ₃₁₅	1,82 1,22 201 343	2,94 2,01 339 610	3,44 2,35 396 662	5,9 4,19 706 1162	10,5 8,9 7,6 1284 2098
	710	IV 125	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,04 0,02 3,85 _{5,4}	0,09 0,05 8,5 14	0,16 0,09 15,8 27,4	0,27 0,17 29,4 53	0,31 0,19 32,7 56	0,52 0,33 57 103	0,59 0,38 65 111	1 0,66 114 193	1,73 1,16 195 351	2,04 1,37 230 381	3,35 2,33 398 ₆₉₆	3,99 2,78 474 ₇₅₆	6,4 4,54 775 1289	11,2 8,5 8,2 1400 2319

Les valeurs en rouge indiquent la puissance thermique nominale P_{N_i} (température ambiante 40 °C, service continu, voir chap. 3.2). Si n_i supérieure à 1 400 min⁻¹ ou inférieure à 355 min⁻¹ voir chap. 3.4 et page 33. 1) Pour **IV** la valeur indiquée est la valeur nominale. Pour les rapports effectifs, voir page 33. 2) M_{2max} constitue le pic maximum du moment de torsion que le réducteur peut supporter.

								Taille	réducte	eur				C	Charles and	qi-	
n _{N2}	n₁	Tr. engr.	P [kW] M					Tame	Toddott	, ui							
mi		1)	[daN m]	32	40	50	63	64	80	81	100	125	126	160	161	200	250
5,6	560	IV 100	P _{N1} P _{N2} M _{N2} M _{2max}	0,05 0,03 4,6 7,2	0,1 0,06 10 17,1	0,18 0,11 18,7 31,9	0,3 0,19 32,6 59	0,33 0,21 36,6 61	0,56 0,37 64 115	0,65 0,43 74 123	1,13 0,76 132 220	1,88 1,29 220 391	2,21 1,52 259 425	3,43 2,43 421 754	4,08 2,89 501 819	6,6 5,4 4,77 826 1430	9,1 7,1 1228 1948
	450	IV 80	P _{N1} P _{N2} M _{N2}	0,05 0,03 5,6	10,8	0,19 0,12 20,2	0,33 0,22 36,7	0,36 0,23 39,4	0,62 0,41 70	0,7 0,47 80	1,21 0,84 141	1,71 1,28 212	1,92 1,44 238	3,07 2,34 395	3,54 2,7 454	5,9 4,56 768	10,5 8,3 1402
	355	IV 63	M _{2max} P _{N1} P _{N2} M _{N2} M _{2max}	9,2 0,05 0,03 6 10,2	18,7 0,11 0,07 11,6 20,1	35,1 0,19 0,13 21,3 37,5	0,27 0,2 0,2 33,4 53	0,28 0,2 0,2 34,7	0,52 0,38 65 108	0,57 0,42 73 121	0,98 0,74 126 212	329 1,74 1,31 220 397	369 1,97 1,49 249 417	3,33 2,56 437 786	740 3,8 2,92 499 848	1290 6,4 4,97 849 1481	11,3 9,1 9 1531 2709
	355	V 63	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	_	0,06 0,03 5,5 7,7	0,11 0,06 10,8 15,2	0,21 0,12 21 29,6	0,23 0,14 23,5 33,1	0,41 0,25 43,1	0,46 0,28 48,2 68	0,78 0,5 85 120	1,36 0,9 153 ₂₃₄	1,57 1,04 176 ₂₆₂	2,54 1,73 293 491	2,92 1,99 337 ₅₅₀	4,81 3,38 572 ₉₅₉	8,7 6,3 1067 ₁₈₅₆
4,5	1 400	IV 315	P _{N1} P _{N2} M _{N2} M _{2max}	_	_	_	_	_	_	_	0,73 0,46 100 166	1,29 0,84 182 326	1,49 0,97 211 356	2,46 1,65 359 647	2,81 1,89 411 703	4,81 3,32 724 1235	8,5 6,1 1322 ₂₂₃₅
	1 120	IV 250	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	-	-	_	_	_	_	_	0,83 0,54 117 ₂₀₃	1,42 0,93 202 364	1,65 1,08 235 396	2,73 1,86 405 724	3,25 2,22 482 ₇₈₆	5,3 3,68 802 1368	9,2 7,7 6,6 1440 2467
	900	IV 200	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	_	0,05 0,03 5,6 7,8	0,1 0,05 11 _{15,5}	0,18 0,1 21,4 30,1	0,2 0,11 23,9 33,7	0,35 0,21 43,9 62	0,39 0,23 49,1 ⁶⁹	0,94 0,62 135 ₂₃₀	1,57 1,06 230 413	1,81 1,23 264 446	2,89 2,01 435 784	3,43 2,38 516 851	5,5 3,92 851 1487	7,7 5,9 1274 1984
	710	IV 160	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	-	0,07 0,04 7,6 10,7	0,13 0,07 14,9 21,1	0,21 0,13 26,9 41,1	0,24 0,14 29,8 46,1	0,4 0,24 52 84	0,45 0,28 59 ₉₄	0,74 0,47 100 ₁₆₆	1,33 0,87 182 326	1,54 1 211 356	2,51 1,68 359 ₆₄₇	2,87 1,93 411 703	4,9 3,39 724 1235	8,7 6,2 1322 ₂₂₃₅
	560	IV 125	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,03 0,02 3,92 5,5	0,07 0,04 8,7 14,2	0,13 0,08 16,2 _{27,9}	0,23 0,14 30,8 54	0,25 0,15 33,5 ⁵⁷	0,43 0,27 59 106	0,49 0,31 67 114	0,83 0,54 117 ₂₀₃	1,44 0,95 202 ₃₆₄	1,68 1,1 235 ₃₉₆	2,75 1,87 405 724	3,27 2,23 482 ₇₈₆	5,3 3,7 802 ₁₃₆₈	9,3 7,7 6,7 1440 2467
	450	IV 100	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,04 0,02 4,79 7,3	0,08 0,05 10,2 17,5	0,15 0,09 19 32,7	0,25 0,16 33,6 61	0,27 0,17 37 62	0,47 0,3 66 118	0,54 0,35 75 126	0,95 0,62 135 ₂₃₀	1,6 1,08 230 413	1,84 1,25 264 446	2,91 2,02 435 ₇₈₄	3,45 2,39 516 851	5,5 3,95 851 ₁₄₈₇	7,7 5,9 1274 1984
	355	IV 80	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,04 0,03 5,7 9,6	0,08 0,05 11,1 _{19,5}	0,15 0,1 20,5 35,9	0,27 0,18 37,8 68	0,29 0,19 40,1 68	0,51 0,34 72 127	0,58 0,38 82 137	1 0,68 145 ₂₅₇	1,41 1,04 218 335	1,55 1,14 240 ₃₇₅	2,58 1,94 415 ₆₇₂	2,94 2,21 473 ₇₅₃	4,83 3,7 790 1313	8,7 6,8 1444 ₂₅₆₃
3,55	1 120	IV 315	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	-	_	_	_	_	_	_	0,61 0,38 103 ₁₆₉	1,09 0,7 189 331	1,25 0,8 216 367	2,09 1,37 373 ₆₇₂	2,41 1,58 429 730	4 2,71 738 ₁₂₈₃	7,2 5 1366 2372
	900	IV 250	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	-	-	_	_	_	_	_	0,7 0,44 120 ₂₀₉	1,22 0,79 213 383	1,38 0,89 241 ₄₁₀	2,3 1,54 417 751	2,72 1,82 494 815	4,42 3,03 820 1420	7,8 5,5 1495 ₂₆₁₅
	710	IV 200	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	-	0,04 0,02 5,7 8	0,08 0,04 11,2 15,7	0,15 0,08 21,7 30,6	0,16 0,09 24,3 34,3	0,29 0,17 44,6 63	0,32 0,19 50 70	0,77 0,5 136 ₂₃₆	1,3 0,86 237 426	1,49 0,99 270 ₄₅₀	2,44 1,67 459 826	2,81 1,92 528 893	4,55 3,19 876 1544	6,3 4,8 1318 ₂₀₁₅
	560	IV 160	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	-	0,05 0,03 7,7 10,9	0,1 0,06 15,2 _{21,4}	0,18 0,1 28,2 41,8	0,19 0,11 30,5 46,8	0,33 0,2 54 86	0,37 0,22 61 96	0,61 0,38 103 ₁₆₉	1,11 0,71 189 331	1,27 0,81 216 367	2,11 1,38 373 ₆₇₂	2,42 1,59 429 730	4,02 2,73 738 1283	7,2 5 1366 2372
	450	IV 125	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,03 0,01 3,98 _{5,6}	0,06 0,03 9 14,5	0,11 0,06 16,6 _{28,4}	0,19 0,12 31,7 55	0,21 0,12 33,8 57	0,37 0,23 62 111	0,41 0,26 69 118	0,7 0,45 120 ₂₀₉	1,25 0,8 213 383	1,41 0,91 241 ₄₁₀	2,31 1,55 417 ₇₅₁	2,74 1,83 494 815	4,44 3,04 820 1420	7,9 6,7 5,5 1495 2615
3,55	355	IV 100	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	0,03 0,02 4,98 7,4	0,07 0,04 10,4 18,2	0,12 0,07 19,3 34	0,2 0,13 34,6 62	0,22 0,14 37,4 62	0,39 0,25 68 122	0,44 0,28 77 129	0,77 0,5 136 236	1,33 0,88 237 426	1,52 1,01 270 450	2,46 1,68 459 826	2,83 1,93 528 893	4,58 3,21 876 1544	6,4 4,82 1318 2015

Les valeurs en rouge indiquent la puissance thermique nominale P_{1_k} (température ambiante 40 °C, service continu, voir chap. 3.2). Si n_i supérieure à 1 400 min⁻¹ ou inférieure à 355 min⁻¹ voir chap. 3.4 et page 33.

1) Pour **IV** la valeur indiquée est la valeur nominale. Pour les rapports effectifs, voir page 33.

2) M_{2max} constitue le pic maximum du moment de torsion que le réducteur peut supporter.

								Taille	e réducte	eur				P-			
n _{N2}	n₁	Tr. engr.	P [kW] M														
mi	in"	1)	[daN m]	32	40	50	63	64	80	81	100	125	126	160	161	200	250
2,8	900	IV 315	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	_	_	_	_	_	_	_	0,51 0,31 105 172	0,94 0,59 198 337	1,05 0,66 222 377	1,77 1,14 386 ₆₉₆	2,03 1,31 443 754	3,37 2,23 755 1331	6 4,14 1402 ₂₄₆₃
	710	IV 250	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	_	_	_	_	_	_	_	0,57 0,36 122 ₂₁₈	1,01 0,64 219 395	1,14 0,72 246 412	1,94 1,28 438 778	2,22 1,46 501 850	3,62 2,44 838 1473	6,5 4,48 1540 ₂₇₁₃
	560	IV 200	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	_		0,07 0,03 11,3	0,12 0,06 22,1 31,1	0,13 0,07 24,7 34,8	0,24 0,13 45,3 ₆₄	0,27 0,15 51 72	0,62 0,4 139 ₂₄₂	1,09 0,71 248 446	1,19 0,78 271 460	2,02 1,36 472 840	2,29 1,54 536 ₉₁₁	3,71 2,56 891 1622	5,2 3,85 1343 ₂₀₄₄
	450	IV 160	P _{N1}	-		0,09 0,05 15,5 _{21,8}	0,15 0,09 29 42,6	0,16 0,09 30,7 47,7	0,28 0,17 56 87	0,32 0,19 63 98	0,52 0,31 105	0,96 0,6 198 337	1,07 0,67 222 377	1,78 1,15 386 ₆₉₆	2,04 1,32 443 754	3,39 2,24 755 1331	6,1 4,16 1402 ₂₄₆₃
	355	IV 125	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	0,02 0,01 4,05 5,7		0,09 0,05 17,3 _{28,9}	0,16 0,1 32,6 56	0,16 0,1 33,8 57	0,3 0,19 64 114	0,34 0,21 71 119	0,57 0,36 122 ₂₁₈	1,03 0,65 219 395	1,16 0,73 246 ₄₁₂	1,95 1,28 438 778	2,23 1,47 501 ₈₅₀	3,64 2,45 838 1473	6,5 4,51 1540 ₂₇₁₃
2,24	710	IV 315	P _{N1} P _{N2} M _{N2} M _{2max}	_	_	_	_	_	_	_	0,43 0,26 110 174	0,78 0,48 203 342	0,85 0,52 223 378	1,5 0,94 405 718	1,7 1,07 460 774	2,77 1,8 772 1397	5 3,36 1444 2554
	560	IV 250	$\begin{array}{c} P_{\text{N1}} \\ P_{\text{N2}} \\ M_{\text{N2}} \\ M_{\text{2max}} \end{array}$	_	_	_	_	_	_	_	0,46 0,28 124 ₂₂₃	0,85 0,53 229 ₄₁₃	0,92 0,57 248 ₄₂₂	1,61 1,03 451 ₇₉₀	1,82 1,17 510 ₈₅₀	2,96 1,96 853 ₁₅₃₆	5,3 3,59 1562 ₂₈₁₂
	450	IV 200	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	_		0,05 0,03 11,5 _{16,2}	0,1 0,05 22,4 31,6	0,11 0,06 25,1 35,4	0,2 0,11 46,1 ₆₅	0,22 0,12 52 73	0,5 0,32 138 ₂₄₉	0,91 0,59 254 ₄₅₈	0,98 0,63 272 463	1,72 1,14 494 850	1,94 1,28 556 ₉₂₁	3,15 2,13 923 1662	4,27 3,15 1364 ₂₀₇₃
	355	IV 160	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	_	0,04 0,02 8 11,3	0,07 0,04 15,7 22,1	0,12 0,07 29,5 43,2	0,13 0,07 31,1 48,4	0,23 0,13 58 89	0,26 0,15 64 99	0,43 0,26 110 174	0,79 0,48 203 342	0,87 0,53 223 378	1,51 0,95 405 718	1,71 1,08 460 774	2,78 1,81 772 1397	5 3,38 1444 ₂₅₅₄
1,8	560	IV 315	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	_	_	_	_	_	_	-	0,35 0,21 112 177	0,64 0,39 209 347	0,68 0,41 224 381	1,24 0,76 416 728	1,39 0,86 469 774	2,29 1,46 795 1426	4,13 2,73 1484 2671
	450	IV 250	P _{N1}	-	_	-	_	_	_	_	0,38 0,24 128 ₂₂₆	0,71 0,44 236 ₄₂₄	0,75 0,46 249 ₄₂₄	1,35 0,86 465 800	1,52 0,96 522 ₈₅₀	2,49 1,61 874 1573	4,5 3 1628 2931
	355	IV 200	$\begin{array}{c} P_{N1} \\ P_{N2} \\ M_{N2} \\ M_{2max} \end{array}$	_	0,02 0,01 5,9 8,4	0,04 0,02 11,7 16,5	0,08 0,04 22,8 32,1	0,09 0,05 25,5 35,9	0,16 0,09 46,7 66	0,18 0,1 52 74	0,42 0,26 144 252	0,75 0,48 263 468	0,79 0,5 275 467	1,39 0,91 500 ₈₅₀	1,56 1,02 560 ₉₂₁	2,62 1,75 961 1730	3,44 2,52 1384 ₂₁₀₂
1,4	450	IV 315	P _{N1} P _{N2} M _{N2} M _{2max}	_	_	-	_	_	_	_	0,29 0,17 116 179	0,54 0,32 216 352	0,56 0,34 226 384	1,03 0,63 428 738	1,15 0,7 477 774	1,95 1,22 827 1446	3,5 2,26 1532 ₂₇₅₇
	355	IV 250	P _{N1}	_	_	_	_	_	_	_	0,32 0,19 131 226	0,58 0,36 243 428	0,6 0,37 251 427	1,11 0,7 481 810	1,24 0,78 534 850	2,03 1,3 894 1597	3,71 2,43 1666 ₂₉₉₅
1,12	355	IV 315	P _{N1} P _{N2} M _{N2} M _{2max}	_	_	_	_	_	_	_	0,24 0,14 120 181	0,45 0,26 225 356	0,45 0,27 229 385	0,85 0,51 442 748	0,94 0,57 489 774	1,59 0,98 845 1465	2,88 1,84 1579 ₂₇₆₉

Résumé rapports de transmission *i* et moments de torsion valables pour $n_1 \le 90 \text{ min}^{-1}$

 $M_{\rm N2}$ et $M_{\rm 2max}$ sont respectivement le moment de torsion nominal et celui de pic valables pour $n_{\rm 1} \leq 90~{\rm min^{-1}}$.

R V

i	M [daN m]							Taille ré	ducteur						
	[0.0.11]	32	40	50	63	64	80	81	100	125	126	160	161	200	250
10	$M_{ m N2} M_{ m 2max}$	6,1 11	11,1 20	20,4 36,7	37,5 68	38,7 68	72 129	80 136	132 238	229 411	252 428	434 781	493 888	_	_
13	$M_{ m N2} \ M_{ m 2max}$	6,1 11	11,2 20,1	20,7 37,3	37,3 67	38,5 67	73 131	81 137	139 250	243 410	265 451	468 842	530 902	886 1 537	_
16	$M_{ m N2} M_{ m 2max}$	5,9 9,2	10,7 18	19,9 35,4	36,6 66	37,5 66	70 126	78 132	134 241	233 420	255 434	464 835	526 894	824 1 274	1 495 2 374
20	$M_{ m N2} \ M_{ m 2max}$	6,4 ¹⁾ 11,5	11,6 ¹⁾ 20,9	21,3 ¹⁾ 38,4	34,9 53	35,4 60	67 110	74 123	127 216	231 416	252 428	450 810	510 866	863 1 554	1 563 2 813
25	$M_{ m N2} \ M_{ m 2max}$	6,2 10,9	11,3 20,1	20,8 37,4	39,4 ¹⁾ 71	40,6 ¹⁾ 71	74 ¹⁾ 132	82 ¹⁾ 140	146 ¹⁾ 263	225 341	242 381	427 683	482 766	817 1 335	1 508 2 605
32	$M_{ m N2} \ M_{ m 2max}$	5,9 9,9	10,6 18,6	19,6 34,9	36,1 65	37,8 65	70 125	78 131	139 242	248 ¹⁾ 446	271 ¹⁾ 460	472 ¹⁾ 840	536 ¹⁾ 911	891 ¹⁾ 1 622	1 343 2 044
40	$M_{ m N2} \ M_{ m 2max}$	5,4 7,7	9,8 14,9	17,9 29,3	33,5 57	34,4 58	65 117	72 119	124 223	229 413	248 422	451 790	510 850	853 1 536	1 562 ¹⁾ 2 812
50	$M_{ m N2} \ M_{ m 2max}$	4,17 5,9	8,1 11,4	15,9 22,4	30 43,8	31,2 49	60 90	66 100	112 177	209 347	224 381	416 728	469 774	795 1 426	1 484 2 671
63		_	6 8,5	11,8 16,7	23 32,5	25,6 36,4	47,3 67	53 75	93 131	182 257	201 288	379 540	426 604	707 1 054	1 353 2 056

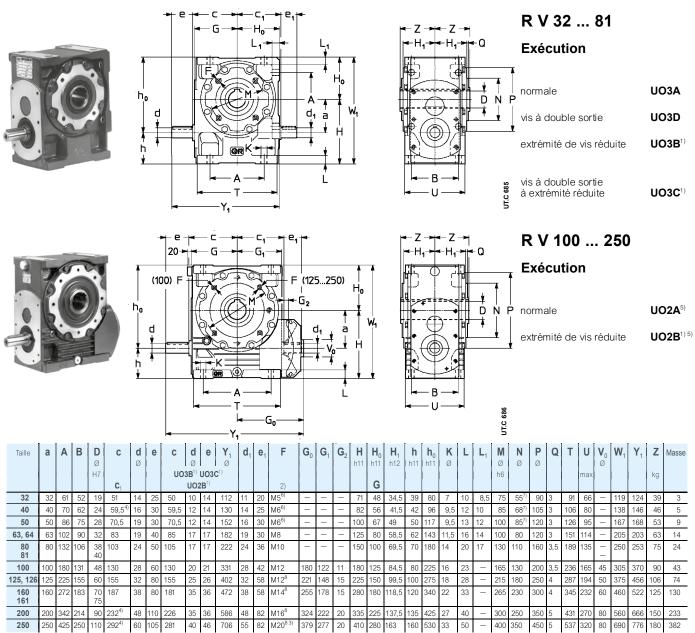
RIV

K IV																	
		Taille	e réducteur								Taille	réduc	teur				
i _N	32	40, 50, 125, 126	63, 64, 80, 81, 100	160, 161, 200, 250	M												
	<i>i</i> 2)	<i>i</i> 2)	<i>i</i> 2)	<i>i</i> 2)	[daN m]	32	40	50	63, 64	80	81	100	125, 126	160	161	200	250
50	51,8 2,59	49,9 3,12 ³⁾	50,9 3,18	50,8 3,17	$M_{ m N2} \ M_{ m 2max}$	7,3 11,5	13 19,5	24,1 37,7	44,3 70	78 133	84 138	144 250	272 455	487 880	540 953	824 1383	1 495 2 406
63	64,8	62,4	63,6	63,5	$M_{ m N2} \ M_{ m 2max}$	7,1 10,9	13,7 21,4	25 40,2	41 65	76 119	86 128	151 233	277 453	487 880	540 910	925 1 597	1 718 2 863
80	82,9	78	79,5	79,3	$M_{ m N2} \ M_{ m 2max}$	6,7 10	13,3 20,2	24,4 38	47,5 73	80 133	90 141	160 268	260 384	487 735	540 824	957 1 436	1 743 2 802
100	104	99,8	102	102	$M_{ m N2} \ M_{ m 2max}$	5,7 8,1	12,6 18,6	23,2 34,9	43,3 66	78 128	88 131	155 252	295 ¹⁾ 468	500 850	560 921	1 000 1 736	1 438 2 227
125	130	125	127	127	$M_{ m N2} \ M_{ m 2max}$	4,38 6,2	11,3 15,9	21,2 31,2	40,6 60	75 119	85 124	146 226	273 428	487 820	540 850	975 1 597	1 800 ¹⁾ 3 034
160	-	156	159	159	$M_{ m N2} \ M_{ m 2max}$	-	8,6 12,1	16,9 23,8	33 49	68 95	76 107	133 188	252 385	487 774	540 774	925 1 470	1 748 2 769
200	-	197	200	_	$M_{ m N2} M_{ m 2max}$	-	6,3 8,9	12,5 17,7	26,4 38,5	50 71	56 79	-	_	_	-	_	_
200	_	203 6,36	204 6,38	204 6,38	$M_{ m N2} M_{ m 2max}$	-	-	_	-	-	-	156 252	300 468	500 850	560 921	1 000 1 736	1 483 2 291
250	_	254	255	255	$M_{ m N2} \ M_{ m 2max}$	_			-	-	-	150 226	289 428	487 820	540 850	975 1 597	1 900 3 134
315	_	318	319	319	$M_{ m N2} M_{ m 2max}$	-	-	-	-	-	-	137 193	268 385	487 774	540 774	975 1 470	1 850 2 769

¹⁾ Pour ces rapports de transmission (qui peuvent transmettre les moments de torsion les plus élevés aux basses vitesses), le moment de torsion augmente encore lorsque n_1 diminue, comme l'indique le tableau A du chap. 3.9; pour les tailles 32 et 40 nous consulter.

2) Rapport d'engrenage du pré-engrenage cylindrique.

3) Pour les tailles 125 et 126 il est égal à 3,13.


Notes de page 42

Notes de page 42
Les valeurs en rouge indiquent la puissance thermique nominale P_{N_0} (température ambiante 40 °C, service continu, voir chap. 3.2). Si n, supérieure à 1 400 min⁻¹ ou inférieure à 355 min⁻¹ voir chap. 3.4 et page 33.

1) Pour N_0 la valeur indiquée est la valeur nominale. Pour les rapports effectifs, voir page 33.

2) N_{2max} constitue le pic maximum du moment de torsion que le réducteur peut supporter.

¹⁾ Uniquement si $i \ge 16$.

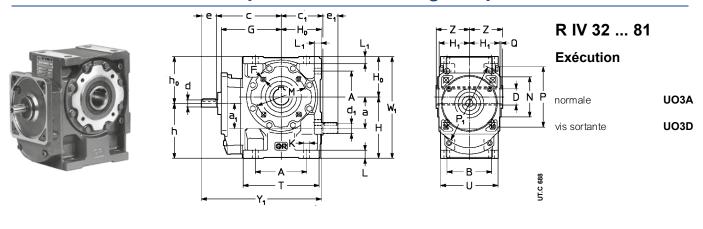
Positions de montage - sens de rotation - et quantités d'huile [I]

В3	В6	В7	B8	V5	V6	Taille	В3	B6, B7	В8	V5, V6
4					<>	32 40 50 63, 64 80, 81	0,16 0,26 0,4 0,8 1,3	0,2 0,35 0,6 1,15 2,2	0,16 0,26 0,4 0,8 1,7	0,16 0,26 0,4 0,8 1,3
В3	В6	B7 ¹⁾	В8	V5	V6					
					√ → UT.C 687	100 125, 126 160, 161 200 250	1,9 3,4 5,6 9,5 17	5,4 10 18 33 57	4,2 8,2 15 30 51	3 5,7 10 20 34

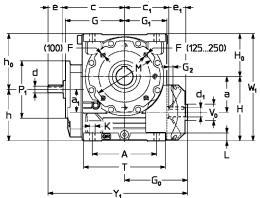
¹⁾ Pour les tailles 200 et 250, la pos. de mont **B7**, avec $n_1 > 710$ min⁻¹ comporte un supplément de prix.

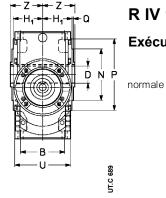
¹⁾ Oriquement si 7 ≥ 16.

2) Longueur utile du filetage 2 · F.


3) Trous burnés de 22° 30' par rapport au schéma.

4) Taille 40: c₁ = 57,5; taille 200: c₁ = 235; taille 250: c₁ = 287.


5) Exécution prévue pour vis à double sortie (chap. 2).


6) Trous burnés de 45° par rapport au schéma.

Exécutions, dimensions, positions de montage et quantité di'huile 3.6

R IV 100 ... 250 **Exécution**

UO2A1)

Taille	а	a ₁	Α	В	С	C ₁	D Ø	d Ø	е	d₁ ∅	e ₁	F	G	G_0	G ₁	G ₂	Н	\mathbf{H}_0	H ₁	h	h ₀	K	L	L ₁	M	N Ø	P	P ₁ Ø	Q	Т	U	V ₀	\mathbf{W}_1	Y ₁	Z	Masse
							H7					2)					h11	h11	h12	h11	h11					h6						max				kg
32	32	32	61	52	81	51	19	11	20	11	20	M5 ⁴⁾	76		ı	ı	71	48	34,5	71	48	7	10	8,5	75	55 ⁵⁾	90	140 ⁶⁾	3	91	66	1	124	149	39	5
40	40	40	70	62	96	57,5	24	11	23	14	25	M6 ⁴⁾	87	-	ı	-	82	56	41,5	82	56	9,5	12	10	85	68 ⁵⁾	105	140 ⁶⁾	3	106	80	-	138	175	46	7
50	50	40	86	75	107	70,5	28	11	23	16	30	M6 ⁴⁾	98	_	-	-	100	67	49	90	77	9,5	13	12	100	85 ⁵⁾	120	140 ⁶⁾	3	126	95	-	167	197	53	11
63, 64	63	50	102	90	127	83	32	14	30	19	30	M8	118	_	-	-	125	80	58,5	112	93	11,5	16	14	100	80	120	160 ⁶⁾	3	151	114	-	205	237	63	17
80 81	80	50	132	106	147	103	38 40		30	24	36	M10	138	-	_	-	150	100	69,5	120	130	14	20	17	130	110	160	160 ⁶⁾	3,5	189	135	-	250	277	75	27
100	100	63	180	131	181	130	48	19*	40*	28	42	M12	170	180	122	11	180	125	84,5	143	162	16	23	_	165	130	200	200	3,5	236	165	45	305	401	90	48
125, 126	125	80	225	155	216	155	60	24*	50*	32	58	M12 ⁸	205	221	148	15	225	150	99,5	180	195	18	28	_	215	180	250	200	4	287	194	50	375	487	106	82
160 161	160	100	272	183	258	187	70 75		60*	38	58	M14 ⁸	247	255	178	15	280	180	118,5	220	240	22	33	1	265	230	300	250	4	345	232	60	460	573	125	146
200	200	100	342	214	303	235	90	28*	60*	48	82	M16 ⁸	292	324	222	20	335	225	137,5	235	325	27	40	1	300	250	350	250	5	431	270	80	560	687	150	249
250			Į,	Į.			110	ı	80	55	82	M20 ^{8 3)}	360	379	277	20	410	280	163	285	405	33	50	-	400	350	450	300	5	537	320	80	690	832	180	408

Positions de montage - sens de rotation - et quantités d'huile [I]

В3	В6	В7	В8	V5	V6	Taille	В3	B6, B7	В8	V5, V6
•				← →		32 40 50 63, 64 80, 81	0,2 0,32 0,5 1 1,5	0,25 0,4 0,7 1,3 2,5	0,2 0,32 0,5 1 2	0,2 0,32 0,5 1 1,5
В3	B6 ¹⁾	B7	В8	V5	V6					
1				← →	Ø → •	100 125, 126 160, 161 200 250	2,1 3,8 6,5 10,4 18,3	6,3 11,6 20,8 38 67	4,5 8,8 16,5 31,5 53	3,3 6,3 11,2 21,2 35,7

¹⁾ Pour les tailles 100 ... 250, la position de montage ${\bf B6}$ comporte un supplément de prix

¹⁾ Exécution prévue pour vis sortante (chap. 2).
2) Longueur utile du filetage 2 · F.
3) Trous tournés de 22° 30' par rapport au schéma.
4) Trous tournés de 45° par rapport au schéma.
5) Tolérance 18.
6) Bride carrée: dimensions voir chap. 15.

* i_N ≥ 200 le bout d'arbre devient
Taille 100' d = 16, e = 30;
Taille 125, 126: d = 19, e = 40;
Taille 160 ... 200: d = 24, e = 50.

P ₁ kW	// 2 min ⁻¹	P ₂ kW	M₂ daN m	fs		Riduttore - Motore Gear reducer - Motor 2)		i	P ₁ kW	// 2 min ⁻¹	P ₂ kW	M₂ daN m	fs	(Riduttore - Motore Gear reducer - Mot		i
0,09	2,06 2,58	0,05 0,05	23,3 19,7	0,8	MR 2IV	/ 50 - 11 × 140 63 A	6	437 349	0,12	18 18	80,0 80,0	4 4,1	0,85 1,6	MR V	32 - 11 × 140 40 - 11 × 140	63 B	50 50 50
	3,3 3,3	0,06 0,06	15,9 16,2		MR 2IV MR 2IV	40 - 11 × 140 63 A	6	273 273		20 21,6	0,09	4,08 3,7	1,32	MR IV	40 - 11 × 140 32 - 11 × 140	63 A	70 4 64,8
	4,12 4,12	0,06	13,3 13,5	1,6	MR 2IV	/ 50 - 11 × 140 63 A	6	218 218		22,2	80,0 80,0 80,0	3,29		MR V	32 - 11 × 140 40 - 11 × 140 40 - 11 × 140	63 A	6 40 4 63 6 40
	4,08 5,07 5,14	0,05 0,06 0,05	11,3 10,6 9,4	1 1 0,8	MR IN MR 2IN MR IN	/ 40 - 11 × 140 63 A	6 6	221 178 175		27 28	0,09 0,08	3,06 2,7	1,7 1,18	MR IV MR V	32 - 11 × 140 32 - 11 × 140	63 A	51,8 50
	5,14 5,07 5,14	0,05 0,06 0,05	10,8 9,6		MR 2IV	/ 50 - 11 × 140 63 A	6	178 175		28	0,08 0,08 0,09	2,83 2,77 2,65	2,12	MR V MR V MR IV	32 - 11 × 140 40 - 11 × 140 32 - 11 × 140	63 A	32 4 50 4 41,5
	6,33 6,43	0,06 0,05	8,8	1,06		/ 40 - 11 × 140 63 A	6	142 140		35 36	0,08 0,09	2,27 2,31	1,6 1,9	MR V MR V	32 - 11 × 140 32 - 11 × 140	63 A 63 B	40 25
	6,43 7,92 8,04	0,06 0,07 0,06	7,9 6,8	1,9 1,32 1,4	MR 2IV	/ 40 - 11 × 140 63 A	6 6	140 114 112		35 43,8 45	0,08 0,09 0,09	1,89	2,8 2 2,36	MR V MR V MR V	40 - 11 × 140 32 - 11 × 140 32 - 11 × 140	63 A	4 40 4 32 6 20
	8,04 8,68	0,06 0,05	6,9	2,65 0,71	MR I\	/ 50 - 11 × 140 63 A	6	112		56 70	0,09		2,50 2,5 3,15	MR V		63 A	1 25 1 20
	10,3 10,9	0,06 0.06	5,5 5,1	1,8 1,06	MR IV	/ 40 - 11 × 140 63 A	6	87,5 82,9		87,5 108	0,03 0,1 0,1	1,08	3,35		32 - 11 × 140 32 - 11 × 140	63 A	1 16 1 13
	12,9 13,9	0,06	4,59 4,16	2,36 1,32	MR IV	/ 40 - 11 × 140 63 A	6	70 64,8	0.40	140	0,1	0,7	4,75	MR V	32 - 11 × 140	63 A	1 10
	14,3 17,4	0,05 0,06	3,62	1,4 1,6	MR ۱	/ 40 - 11 × 140 63 A	6	63 51,8	0,18	1,49 1,49 1,86		65 65 55	1,06	MR 2IV MR 2IV MR 2IV	80 - 14 × 160 81 - 14 × 160 80 - 14 × 160	71 A	6 605 6 605 6 484
	18 18	0,06 0,06	3 3,08	1,12 2,12	MR ۱		6	50 50		1,86 2,33	0,11	55 44,7	1,32	MR 2IV MR 2IV	81 - 14 × 160 63 - 14 × 160	71 A	6 484 6 387
	21,7	0,07	3,02 2,53	1,7 1,6	MR \	/ 32 - 11 × 140 63 A	6	41,5 40		2,33 2,33	0,11 0,11	45,8 45,8	1,6 1,7	MR 2IV MR 2IV	80 - 14 × 160 81 - 14 × 160	71 A	387 387
	28,1 36	0,06 0,07	2,12 1,73	2 2,5	MR \	/ 32 - 11 × 140 63 A / 32 - 11 × 140 63 A	6	32 25			0,11 0,12 0,12	36,6 37,6 37,6	2	MR 2IV MR 2IV MR 2IV	63 - 14 × 160 80 - 14 × 160 81 - 14 × 160	71 A	302 302 302 302
0,12	2,58 3,21	0,07 0,07	26,3 20,6	0,8	MR 2IV	/ 50 - 11 × 140 63 A	6 4	349 437		3,56 3,56	0,12 0,12	31,1 31,7	1,25 2,36	MR 2IV MR 2IV	63 - 14 × 160 80 - 14 × 160	71 A 71 A	253 253
	3,3 4,01	0,07	21,6 17,4	1,12	MR 2IV MR 2IV MR 2IV	50 - 11 × 140 63 A	6 4	273 349		3,56 4,01 3,76	0,12 0,11 0,1	31,7 26 25,8	0,75	MR 2IV MR 2IV MR IV	81 - 14 × 160 50 - 11 × 140 63 - 14 × 160	63 B	253 4 349 5 239
	4,12 4,08 5,13	0,08 0,06 0,08	18 15 14	0,75		/ 50 - 11 × 140 63 B	6 6 4	218 221 273		3.76 3.76	0,1 0,11	25,8 26,7	0,95 1,7	MR IV MR IV	64 - 14 × 160 80 - 14 × 160	71 A 71 A	239 239
	5,13 5,14	0,08	14,3	1,4	MR 2IV		4	273 175		4,55	0,11 0,11 0.11	26,7 24 24,5	0,85	MR IV MR 2IV MR 2IV	81 - 14 × 160 50 - 14 × 160 63 - 14 × 160	71 A	5 239 6 198 6 204
	6,41 6,43 6,41		11,7 10,7 11,8	0,8	MR 2IV MR IV MR 2IV	/ 40 - 11 × 140 63 B	4 6 4	218 140 218		4.74 4.74	0,11 0,11	21,9 21,9	1,25 1,32	MR IV MR IV	63 - 14 × 160 64 - 14 × 160	71 A 71 A	5 190 5 190
	6,35 6,43	0,07	10,2 10,9	1,06 1,4	MR I	/ 50 - 11 × 140 63 A	4	221 140		5.13	0,11		0,95	MR 2IV	80 - 14 × 160 50 - 11 × 140	63 B	190 1 273
	7,88 8	0,08	9,3 8,4	0,85		/ 40 - 11 × 140 63 A	4	178 175		5,66 5,92	0,12 0,12 0,11	20 18,5	1,8 1,6	MR 2IV MR 2IV MR IV	50 - 14 × 160 63 - 14 × 160 63 - 14 × 160	71 A 71 A	5 158 6 159 6 152
	8,04 7,88 8	0,08 0,08 0,07	9 9,5 8,7	1,06 2,12 1,6	MR 2IV	/ 50 - 11 × 140 63 A	6 4 4	112 178 175		6,41	0,11	17,7	1,18	MR 2IV	64 - 14 × 160 50 - 11 × 140	63 B	152
	8,04 9,85	0,08 0,08	9,2 7,7	2	MR IV	/ 50 - 11 × 140 63 B	6 4	112 142			0,1 0,12 0,11				50 - 11 × 140 50 - 14 × 160 50 - 14 × 160	71 A	1 221 5 129 5 127
	10 10,3 10	0,07 0,08 0,08	7,1 7,4 7,3	1,12 1,32		/ 40 - 11 × 140 63 B	4 6 4	140 87,5 140		7.4	0,12	15,4	2	MR IV MR 2IV	63 - 14 × 160 40 - 11 × 140	71 A	122
	10,9 12,3	0,08	6,7 6,9	8,0		/ 32 - 11 × 140 63 B	6	82,9 114		7,88 8	0,12 0,11	14,2 13	1,4 1,06	MR 2IV MR IV	50 - 11 × 140 50 - 11 × 140	63 B 63 B	178 175
	12,5 12,5 12,9	0,08	6 6,1	1,4 1,5 1,7	MR I\	/ 40 - 11 × 140 63 A	4 6	112 70		8,87	0,12 0,11	12,3	0,67 1,6 1,25	MR 2IV MR IV	40 - 14 × 160 50 - 14 × 160 50 - 14 × 160	71 A 71 A	5 101 5 103 5 101
	13,5 13,9	0,08 0,08	5,4 5,5	0,8 0,95	MR I\	/ 32 - 11 × 140 63 B	4	104 64,8		8.84 9.85	0,12 0,12	13,2 11,6	2,24 0,95	MR IV MR 2IV	63 - 14 × 160 40 - 11 × 140	71 A 63 B	102 1 142
	14,3 14,3 16,9			1,06 2 1,06	MR ۱	/ 40 - 11 × 140 63 B / 50 - 11 × 140 63 B / 32 - 11 × 140 63 A	6 6 4	63 63 82,9				10,7 11,8		MR IV MR 2IV	40 - 11 × 140 50 - 11 × 140		140 1 142
	16 16 17,4	80,0	4,94 4,6	1,9	MR I\	/ 40 - 11 × 140 63 A	4	87,5 51,8									

¹⁾ Puissance pour service continu S1; pour services S2... S10 il est possible de les **augmenter** (chap. 2b): P_2 M_2 augmentent et fs diminue de façon proportionnelle. 2) Pour la désignation complète dans la commande, voir chap. 3.1.

Tableaux de sélection motoréducteurs

P ₁ kW	// ₂ min ⁻¹	P ₂ kW	M₂ daN m	fs		Riduttore - Motoro ear reducer - Mot 2)		j	P ₁ kW	//2 min ⁻¹	P ₂	M₂ daN m	fs	Riduttore - Motore Gear reducer - Motor	j
0,18	10 11.1 12.3 12.5 12.5 12.5 14.2 14.3 16.9 16 16 17.7 18 20 21.6 22.2 22.5 22.2 22.2 22.2 22.2 22.2 22	0,12 0,13 0,12 0,13 0,11 0,13 0,11 0,13 0,12 0,13 0,12 0,13 0,12 0,13 0,12 0,13 0,12 0,13 0,12 0,13 0,12 0,13 0,12 0,13 0,12 0,13 0,12 0,12 0,13 0,12 0,13 0,12 0,13 0,12 0,13 0,12 0,13 0,12 0,13 0,12 0,13 0,12 0,13 0,12 0,13 0,12 0,13 0,12 0,13 0,12 0,13 0,12 0,13 0,12 0,13 0,13 0,12 0,13 0,13 0,14 0,12 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13	3,98 3,4 3,47 3,51 2,84 2,9 2,31 2,34 1,9 1,61 1,34 1,05 0,84 0,76	1,7 0,95 1,8 1,18 0,71 1,25 2,36 1,5 1,06 2,65 2 1,6 0,9 1,5 1,4 1,9 1,7 1,12 0,8 1,4 1,9 2,36 1,14 1,9 2,36 1,14 1,9 2,36 1,14 1,9 2,36 1,16 1,16 1,17 1,18 1,19 1,19 1,19 1,19 1,19 1,19 1,19	MR IV WMR IV V WMR IV V WMR IV V WMR IV V WMR IV WMR IV WMR IV WMR IV V WMR IV WM	50 - 14 × 160 50 - 14 × 160 32 - 11 × 140 40 - 11 × 140 50 - 11 × 140 40 - 14 × 160 50 - 14 × 160 50 - 14 × 160 40 - 11 × 140 40 - 11 × 140 40 - 11 × 140 40 - 11 × 140 40 - 11 × 140 32 - 11 × 140	63 B 4 63 B 63 B	81.1 81,1 114 112 112 63,4 63 63,4 63 82,9 87,5 50,7 50 70 64,8 40,6 63 40 63 56 51,8 50 32 50 41,5 40 25 40 25 40 25 20 16 13 10 16 7 13	0.25	3,76 3,76 4,63 4,74 4,74 4,74 5,13 5,53 5,58 5,58 5,58 5,58 5,58 5,58 5,5	0,17 0,16 0,16 0,16 0,16 0,15 0,15 0,15 0,15 0,15 0,16 0,15 0,17 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,17	37,1 33,6 33,6 33,6 34,2 34,2 31,4 29,7 27,6 28,4 24,3 25,7 25 24,6 20,2 22,5 22,5 22,5 22,5 21,4 41,7 17,2 21,4 18,1 17,1 17,2 11,4 11,5 11,5 11,5	1,7 1,9 0,71 1,18 1,32 1,12 2,36 1,7 1,9 0,67 0,75 1,32 1,4 0,85 0,91 1,25 1,7 1,9 0,85 0,91 1,4 1,6 1,18 1,18 1,18 1,18 1,19 1,19 1,19 1,19	MR 2IV 80 - 14 × 160 71 B 6 22 MR IV 64 - 14 × 160 71 B 6 22 MR IV 80 - 14 × 160 71 B 6 22 MR IV 81 - 14 × 160 71 B 6 22 MR IV 81 - 14 × 160 71 B 6 22 MR IV 81 - 14 × 160 71 B 6 22 MR IV 63 - 14 × 160 71 B 6 12 MR IV 63 - 14 × 160 71 B 6 13 MR IV 64 - 14 × 160 71 B 6 13 MR IV 80 - 14 × 160 71 B 6 13 MR IV 80 - 14 × 160 71 B 6 13 MR IV 80 - 14 × 160 71 B 6 13 MR IV 80 - 14 × 160 71 B 6 13 MR IV 80 - 14 × 160 71 B 6 13 MR IV 80 - 14 × 160 71 B 6 13 MR IV 80 - 14 × 160 71 B 6 13 MR IV 80 - 14 × 160 71 B 6 13 MR IV 80 - 14 × 160 71 B 6 13 MR IV 63 - 14 × 160 71 B 6 13 MR IV 63 - 14 × 160 71 A 4 22 MR IV 63 - 14 × 160 71 A 4 22 MR IV 63 - 14 × 160 71 A 4 22 MR IV 63 - 14 × 160 71 A 4 22 MR IV 63 - 14 × 160 71 A 4 22 MR IV 63 - 14 × 160 71 A 4 22 MR IV 63 - 14 × 160 71 A 4 22 MR IV 63 - 14 × 160 71 A 4 22 MR IV 63 - 14 × 160 71 A 4 22 MR IV 63 - 14 × 160 71 A 4 22 MR IV 63 - 14 × 160 71 A 4 22 MR IV 63 - 14 × 160 71 A 4 22 MR IV 63 - 14 × 160 71 A 4 22 MR IV 63 - 14 × 160 71 A 4 22 MR IV 63 - 14 × 160 71 A 4 11 MR IV 60 - 11 × 140 63 C 4 11 MR IV	7553 7553 7553 7553 7553 7553 7553 7553
0.25	1.86 1.86 2.32 2.32 2.33 2.33 2.98 2.89 2.89 2.98 2.98 3.62 3.62 3.56	0,14 0,15 0,15 0,15 0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	77 77 60 64 64 51 51 52 52 41 41,	0,75 0,9 0,95 1,06 1,12 1,25 0,8 1,25 1,4 1,5 1,6 0,85 0,9 0,9	MR 2IV	81 - 14 × 160 63 - 14 × 160 80 - 14 × 160 81 - 14 × 160 80 - 14 × 160 81 - 14 × 160 63 - 14 × 160	71 B 6 71 B 6 71 B 6 71 B 6 71 A 4 71 A 4 71 B 6 71 B 6 71 B 6 71 A 4 71 A 4 71 B 6 71 B 6 71 A 4 71 B 6 71 A 4 71 B 6	484 484 605 605 387 387 302 484 484 302 302 387 387 253		14,2 14,3 13,8 14,3 14,3 16 17 16 17,3 17,7 18 17,3 17,7 18 18 20	0,17 0,16 0,18 0,16 0,17 0,19 0,18 0,17 0,18 0,17 0,18 0,17 0,18	11,7 10,4 12,2 11 11 10,3 10,6	1,5 0,95 2,24 1,7 1,9 0,9 1,7 1,7 0,9 1,06 0,75 1,7 1,9 1,4 2,24 1,18	MR IV 50 - 14 × 160 71 B 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	31,4 31,4 31,5 31,3 31,7,5 31,1 31,1 31,1 31,1 31,1 31,1 31,1 31

¹⁾ Puissance pour service continu S1; pour services S2 ... S10 il est possible de les **augmenter** (chap. 2b): P_2 , M_2 augmentent et fs diminue de façon proportionnelle. 2) Pour la désignation complète dans la commande, voir chap. 3.1.

* Position de montage **B5R**; disponible même pour la **B5** (voir tableau chap. 2b).

Rossi 2609-22.11 Série A

P ₁ kW	n_2 P_2 min^{-1} kW	M ₂ daN m	fs	Riduttore - Motore Gear reducer - Motor 2)	j	M ₂		M₂ daN m	fs	Riduttore - Motore / Gear reducer - Motor
0,25	56 0.19 70 0.19 70 0.2 87.5 0.21 87.5 0.21 108 0.21 140 0.21 140 0.21 175 0.21 200 0.22 200 0.22 215 0.22 280 0.22	6,9 6,9 7,2 7,7 7,4 7,5 7,4 6,4 5,9 6,3 5,8 6 6,4 5,9 6,1 5,5 4,83 4,83 4,83 4,97 4,03 4,01 3,21 3,26 3,26 2,64 2,64 2,64 2,67 2,24 2,27 1,86 1,05 1,05 0,96 0,75	2,12 1,4 1,8 2,36 1,25 1,06 1,06 1,06 1,06 1,06 1,06 1,06 1,06	MR	63,4 63 63 40 63,4 63 56 51,8 32 50,7 50 32 50,7 50 32 41,5 40 40 40 25 40,6 40 40 25 20 32 20 25 25 25 25 25 25 25 25 25 25 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21	7,37 7,4 6,88 6,88 7,37 7,37 7,4 8,85 8,8 8,8 9,21 11,1 11,1 11,1 11,5 11,5 11,5 11,5 1	0.22 0.24 0.24 0.25 0.23 0.24 0.25 0.	49,7 45,5 51,46,5 46,5 46,5 46,5 48,1 42,2 33,8 38,4 42,8 37,3 39,2 33,4 33,2 33,3 33,3 33,3 33,6 33,6 33,6 34,8 34,8 35,9 36,6 37,2 37,2 27,2 26,3 26,8 27,2 27,	1,5 0,75,8 0,6,4,6 1,1,25 1,0,95 1,1,32 1,0,95 1,1,32 1,1,32 1,1,32 1,1,32 1,1,32 1,1,32 1,1,32 1,1,32 1,1,32 1,1,32 1,1,32 1,1,32 1,2,4,4 1,2,5	MR IV 81 - 14 × 160 71 C 6 239 MR IV 100 - 19 × 200 80 A 6 239 MR 2IV 63 - 14 × 160 71 B 4 302 MR IV 64 - 14 × 160 71 B 4 302 MR IV 80 - 14 × 160 71 B 4 302 MR IV 80 - 14 × 160 71 B 4 302 MR IV 81 - 14 × 160 71 B 4 302 MR IV 80 - 14 × 160 71 C 6 190 MR IV 80 - 14 × 160 71 C 6 190 MR IV 100 - 19 × 200 80 A 6 190 MR IV 63 - 14 × 160 71 B 4 253 MR IV 64 - 14 × 160 71 B 4 253 MR IV 64 - 14 × 160 71 B 4 253 MR IV 63 - 14 × 160 71 C 6 152 MR IV 63 - 14 × 160 71 C 6 152 MR IV 80 - 14 × 160 71 B 4 253 MR IV 64 - 14 × 160 71 B 4 253 MR IV 80 - 14 × 160 71 B 4 253 MR IV 80 - 14 × 160 71 B 4 253 MR IV 80 - 14 × 160 71 B 4 253 MR IV 80 - 14 × 160 71 B 4 253 MR IV 80 - 14 × 160 71 B 4 253 MR IV 81 - 14 × 160 71 B 4 253 MR IV 80 - 14 × 160 71 B 4 253 MR IV 80 - 14 × 160 71 B 4 253 MR IV 81 - 14 × 160 71 B 4 253 MR IV 80 - 14 × 160 71 B 4 253 MR IV 80 - 14 × 160 71 B 4 253 MR IV 80 - 14 × 160 71 B 4 253 MR IV 80 - 14 × 160 71 B 4 253 MR IV 81 - 14 × 160 71 B 6 152 MR 21V 63 - 19 × 200 80 A 6 127 MR 21V 63 - 14 × 160 71 B 4 204 MR 21V 63 - 14 × 160 71 B 4 204 MR 21V 63 - 14 × 160 71 B 4 190 MR IV 63 - 14 × 160 71 B 4 190 MR IV 63 - 14 × 160 71 B 4 190 MR IV 63 - 14 × 160 71 B 4 190 MR IV 81 - 14 × 160 71 B 4 190 MR IV 81 - 14 × 160 71 B 4 190 MR IV 81 - 14 × 160 71 B 4 190 MR IV 81 - 14 × 160 71 B 4 190 MR IV 81 - 14 × 160 71 B 4 152 MR IV 80 - 14 × 160 71 B 4 152 MR IV 80 - 14 × 160 71 B 4 152 MR IV 81 - 14 × 160 71 B 4 152 MR IV 63 - 14 × 160 71 B 4 152 MR IV 63 - 14 × 160 71 B 4 152 MR IV 63 - 14 × 160 71 B 4 152 MR IV 63 - 14 × 160 71 B 4 152 MR IV 63 - 14 × 160 71 B 4 152 MR IV 64 - 14 × 160 71 B 4 152 MR IV 63 - 14 × 160 71 B 4 152 MR IV 63 - 14 × 160 71 B 4 152 MR IV 63 - 14 × 160 71 B 4 152 MR IV 63 - 14 × 160 71 B 4 152 MR IV 64 - 14 × 160 71 B 4 152 MR IV 63 - 14 × 160 71 B 4 152 MR IV 60 - 14 × 160 71 B 4 152 MR IV 60 - 14 × 160 71 B 4 152 MR IV 60 - 14 × 160 71 B 4 152 MR IV 60 - 14 × 160 71 B 4 152 MR IV 60 - 14 × 160 71 B 4 152 MR IV 60 - 14 × 160 71 B 4 122 MR IV 60 - 14 × 160 71 B 4 122 MR IV 50 - 14 × 160 71 B
0,37	1.49 0.22 1.86 0.23 2.32 0.22 2.33 0.23 2.33 0.23 2.39 0.23 2.89 0.23 2.98 0.24 2.98 0.24 2.98 0.25 3.62 0.24 3.62 0.24 3.56 0.25	138 116 89 89 94 94 96 75 77 77 77 79 62 62	0,85 1,12 0,67 0,71 0,75 0,85 1,4 0,85 0,95 1,06 1,9 1,06 1,25	MR 2IV 100 - 19 × 200 80 A 6 MR 2IV 100 - 19 × 200 80 A 6 MR 2IV 80 - 14 × 160 71 B 4 MR 2IV 81 - 14 × 160 71 C 6 MR 2IV 80 - 14 × 160 71 C 6 MR 2IV 80 - 14 × 160 71 C 6 MR 2IV 80 - 14 × 160 71 C 6 MR 2IV 80 - 14 × 160 71 C 6 MR 2IV 80 - 14 × 160 71 B 4 MR 2IV 81 - 14 × 160 71 B 4 MR 2IV 81 - 14 × 160 71 C 6 MR 2IV 81 - 14 × 160 71 C 6 MR 2IV 80 - 14 × 160 71 C 6 MR 2IV 80 - 14 × 160 71 C 6 MR 2IV 80 - 14 × 160 71 C 6 MR 2IV 80 - 14 × 160 71 C 6 MR 2IV 81 - 14 × 160 71 B 4 MR 2IV 80 - 14 × 160 71 B 4 MR 2IV 81 - 14 × 160 71 B 4 MR 2IV 81 - 14 × 160 71 B 4 MR 2IV 81 - 14 × 160 71 B 4 MR 2IV 81 - 14 × 160 71 B 4 MR 2IV 81 - 14 × 160 71 B 4 MR 2IV 81 - 14 × 160 71 B 4 MR 2IV 81 - 14 × 160 71 B 4 MR 2IV 81 - 14 × 160 71 B 4	605 484 605 605 387 387 387 484 484 302 302 302 387 387 253	13,8 13,8 14,3 14,3 14,3 17,7 17,7 17,7 17,7 18 17,6 18	0,26 0,24 0,24 0,24 0,25 0,25 0,26 0,26 0,27 0,26 0,24	18 18 16,2 16,2 16,2 16,8 15,8 14,1 14,2 14,3 14,7 13,6 13,6	1,5 1,18 1,18 1,32 2,24 1,12 0,71 1,12 1,32 1,25 0,95 2 1,5 1,5	MR IV 63 - 14 × 160 71 B 4 102 MR IV 64 - 14 × 160 71 B 4 102 MR V 63 - 14 × 160 71 C 6 63 MR V 63 - 19 × 200 80 A 6 63 MR V 80 - 19 × 200 80 A 6 63 MR IV 80 - 19 × 200 80 A 6 63 MR IV 40 - 14 × 160 71 B 4 82,4 MR IV 50 - 14 × 160 71 C 6 50,7 MR IV 50 - 14 × 160 71 C 6 50,7 MR IV 50 - 14 × 160 71 C 6 50,7 MR IV 50 - 14 × 160 71 C 6 50,7 MR IV 50 - 14 × 160 71 C 6 50,8 MR V 50 - 14 × 160 71 C 6 50,8 MR V 50 - 14 × 160 71 C 6 50 MR IV 63 - 14 × 160 71 C 6 50 MR V 63 - 14 × 160 71 C 6 50 MR V 63 - 14 × 160 71 C 6 50 MR V 63 - 14 × 160 71 C 6 50 MR V 63 - 14 × 160 71 C 6 50

¹⁾ Puissance pour service continu S1; pour services S2 ... S10 il est possible de les **augmenter** (chap. 2b): P_2 , M_2 augmentent et fs diminue de façon proportionnelle. 2) Pour la désignation complète dans la commande, voir chap. 3.1. * Position de montage **B5R**; disponible même pour la **B5** (voir tableau chap. 2b).

Tableaux de sélection motoréducteurs

			Ì	l									
P ₁	// ₂ min ⁻¹	P ₂	M_2 daN m	fs	Riduttore - Motore Gear reducer - Motor	i		// 2 min ⁻¹		M_2 daN m	fs.	Riduttore - Motore Gear reducer - Motor	j
1)					2)		1)					2)	
0.37	27,6 28 28,1 27,6 27,7 28 28,1 28 34,5 35 36 35 34,5 35 43,8 45 45 45 66 56 70 70 87,5 87,5 108 140 140	0.27 0.29 0.26 0.26 0.27 0.27 0.27 0.28 0.29 0.26 0.27 0.27 0.29 0.26 0.27 0.27 0.28 0.29 0.28 0.29 0.29 0.20 0.27 0.28 0.29 0.29 0.20 0.21 0.27 0.27 0.28 0.29 0.30 0.31 0.31 0.31 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.33	10,9 12,7 11 11,4 11,4 9,4 8,6 8,9 9,1 10,1 8,8 9,1 7,2 8,2 7,4 7,6 8,9 6,1 1,7 1,7 2,7 8,2 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7	1,4 1,4 1,4 0,95 1,18 2 1,6 1,9 2 1 0,71 0,9 1,8 1,6 2,12 1,06 0,9 1,12 1,9 2,65 0,67 0,8 1,18 2,12 1,06 0,9 1,12 1,19 2,2,65 1,18 1,18 1,18 1,18 1,18 1,18 1,18 1,1	MR	63.4 40 63.4 40.6 63.6 63 63 63 63 63 63 63 63 63 6	11 11 11 11 11 11 11 11 11 11 11 11 11	4.33 4.63 4.74 5.553 5.563 5.563 5.563 5.563 5.563 5.563 5.563 5.563 5.563 5.563 5.563 5.563 5.563 5.563 5.563 5.563 5.563 5.563 5.563 5.6	0.36 0.36 0.36 0.37 0.37 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36	76 777 72 64 64 655 557 76 657 60 50 50 50 50 50 50 50 50 50 50 50 50 50	0.9.9.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	MR IV 81 - 14 × 160 71 C 4 MR IV 80 - 19 × 200 80 B 6 MR IV 100 - 19 × 200 80 A 4 MR IV 100 - 19 × 200 80 A 4 MR IV 100 - 19 × 200 80 A 4 MR IV 100 - 19 × 200 80 A 4 MR IV 100 - 19 × 200 80 A 4 MR IV 80 - 19 × 200 80 A 4 MR IV 80 - 19 × 200 80 A 4 MR IV 80 - 14 × 160 71 C 4 MR IV 80 - 14 × 160 71 C 4 MR IV 80 - 14 × 160 71 C 4 MR IV 63 - 19 × 200 80 A 4 MR IV 80 - 14 × 160 71 C 4 MR IV 63 - 14 × 160 71 C 4 MR IV 63 - 19 × 200 80 A 4 MR IV 64 - 14 × 160 71 C 4 MR IV 63 - 19 × 200 80 A 4 MR IV 64 - 14 × 160 71 C 4 MR IV 63 - 19 × 200 80 A 4 MR IV 64 - 14 × 160 71 C 4 MR IV 63 - 19 × 200 80 A 4 MR IV 64 - 14 × 160 71 C 4 MR IV 63 - 19 × 200 80 A 4 MR IV 63 - 19 × 200 80 A 4 MR IV 63 - 19 × 200 80 B 6 MR IV 64 - 14 × 160 71 C 4 MR IV 80 - 19 × 200 80 A 4 MR IV 80 - 19 × 200 80 A 4 MR IV 80 - 19 × 200 80 A 4 MR IV 80 - 19 × 200 80 A 4 MR IV 80 - 19 × 200 80 A 4 MR IV 80 - 19 × 200 80 A 4 MR IV 80 - 19 × 200 80 A 4 MR IV 81 - 19 × 200 80 A 4 MR IV 81 - 14 × 160 71 C 4 MR IV 80 - 19 × 200 80 A 4 MR IV 81 - 19 × 200 80 A 4 MR IV 81 - 19 × 200 80 A 4 MR IV 81 - 19 × 200 80 A 4 MR IV 80 - 19 × 200 80 A 4 MR IV 81 - 19 × 200 80 A 4 MR IV 81 - 19 × 200 80 A 4 MR IV 81 - 19 × 200 80 A 4 MR IV 81 - 19 × 200 80 A 4 MR IV 63 - 19 × 200 80 A 4 MR IV 63 - 19 × 200 80 A 4 MR IV 63 - 19 × 200 80 A 4 MR IV 63 - 19 × 200 80 A 4 MR IV 63 - 19 × 200 80 A 4 MR IV 63 - 19 × 200 80 A 4 MR IV 63 - 19 × 200 80 A 4 MR IV 63 - 19 × 200 80 A 4 MR IV 63 - 19 × 200 80 A 4 MR IV 63 - 19 × 200 80 A 4 MR IV 64 - 19 × 200 80 A 4 MR IV 63 - 19 × 200 80 A 4 MR IV 64 - 19 × 200 80 A 4 MR IV 63 - 19 × 200 80 A 4 MR IV 80 - 19 × 200 80 A 4 MR IV 81 - 14 × 160 71 C 4 MR IV 81 - 14 × 160 71 C 4 MR IV 81 - 14 × 160 71 C 4 MR IV 81 - 14 × 160 71 C 4 MR IV 81 - 14 × 160 71 C 4 MR IV 81 - 14 × 160 71 C 4 MR IV 81 - 14 × 160 71 C 4 MR IV 80 - 19 × 200 80 A 4	323 323 323 323 323 329 258 258 258 258 239 160 160 253 239 152 202 202 202 202 190 127 127 127 159 162 162 162 162 162 162 162 162
0,55	3,56 3,76 4,63	0,33 0,35 0,35 0,37 0,35	135 143 114 117 92 92 94 99 85 75	0,8 0,95 1,06 1,25 0,75 0,85 1,4 1,5 1,06 0,95	MR 2IV 100 - 19 × 200 80 B 6 MR 2IV 100 - 19 × 200 80 A 4 MR 2IV 100 - 19 × 200 80 B 6 MR 2IV 100 - 19 × 200 80 B 6 MR 2IV 100 - 19 × 200 80 B 6 MR 2IV 80 - 14 × 160 71 C 4 MR 2IV 100 - 19 × 200 80 B 6 MR 2IV 100 - 19 × 200 80 B 6 MR IV 100 - 19 × 200 80 B 6 MR IV 100 - 19 × 200 80 B 6 MR IV 100 - 19 × 200 80 B 6 MR IV 100 - 19 × 200 80 B 6 MR 2IV 80 - 14 × 160 71 C 4 MR 2IV 81 - 14 × 160 71 C 4	484 605 387 484 302 387 387 253 239 302 302	1	13.8 13.8 13.8 14,2 14,3 14,3 13.8 13.8 13.8 14,3 14,3	0,39 0,38 0,38 0,39 0,39 0,36 0,4 0,4 0,39 0,39 0,37 0,37	26.8 26.5 26.5 26.5 26.5 24.1 27.6 27.6 27.1 27.1	2,36 1,8 2,12 1,5 1,8	MR IV 64 - 14 × 160 71 C 4 MR IV 63 - 19 × 200 80 A 4 MR IV 64 - 19 × 200 80 A 4 MR IV 64 - 19 × 200 80 B 6 MR IV 64 - 19 × 200 80 B 6 MR V 63 - 19 × 200 80 B 6 MR V 64 - 19 × 200 80 B 6 MR IV 80 - 14 × 160 71 C 4 MR IV 81 - 14 × 160 71 C 4 MR IV 81 - 19 × 200 80 A 4 MR IV 81 - 19 × 200 80 B 6 MR IV 80 - 19 × 200 80 B 6 MR V 80 - 19 × 200 80 B 6 MR V 80 - 19 × 200 80 B 6	102 102 102 102 63,5 63,5 63 102 102 102 102 63 63 81,1

¹⁾ Puissance pour service continu S1; pour services S2 ... S10 il est possible de les **augmenter** (chap. 2b): P_2 , M_2 augmentent et fs diminue de façon proportionnelle. 2) Pour la désignation complète dans la commande, voir chap. 3.1. * Position de montage **B5R**; disponible même pour la **B5** (voir tableau chap. 2b).

2609-22.11 Série A Rossi

P ₁	Riduttore - Motore Gear reducer - Motor 2)	j		n ₂	M ₂ fs	Riduttore - Motore Gear reducer - Motor	j
17.6 0.4 21.8 1.4 17.6 0.4 21.8 1.6 17.2 0.39 21.8 1.5 18 0.38 20.2 1,06 18 0.38 20.2 1,25 17.6 0.41 22.3 2,65 17.6 0.41 22.3 3,15 17.2 0.4 22.4 2,8 18 0.39 20.9 2 18 0.39 20.9 2 18 0.39 20.9 2 18 0.39 17.3 0.9 21.5 0.39 17.3 0.9 22.1 0.4 17.2 0,95 21.5 0.39 17.3 0.9 22.2 0.4 18.9 1,30 22.2 0.4 18.9 1,6 22.1 0.4 18.9 1,6 22.1 0.4 17.7 1,9 22.2 0.38 16.4 1,06 22.2 0,38 16.4 1,06	MR IV 64 - 19 × 200 80 A 4 6 MR V 63 - 19 × 200 80 B 6 6 MR IV 80 - 14 × 160 71 C 4 MR IV 81 - 14 × 160 71 C 4 MR IV 81 - 19 × 200 80 B 6 6 MR IV 81 - 19 × 200 80 A 4 MR IV 81 - 19 × 200 80 B 6 MR IV 50 - 19 × 200 80 B 6 MR IV 50 - 14 × 160 71 C 4 MR IV 50 - 19 × 200 80 B 6 MR IV 50 - 19 × 200 80 B 6 MR IV 50 - 19 × 200 80 B 6 MR IV 50 - 19 × 200 80 B 6 MR IV 50 - 19 × 200 80 B 6 MR IV 63 - 19 × 200 80 B 6 MR IV 63 - 14 × 160 71 C 4 MR IV 63 - 14 × 160 71 C 4 MR IV 63 - 14 × 160 71 C 4 MR IV 63 - 19 × 200 80 A 4 MR IV 63 - 19 × 200 80 A 4 MR IV 63 - 19 × 200 80 A 4 MR IV 63 - 19 × 200 80 A 4 MR IV 63 - 19 × 200 80 A 4 MR IV 63 - 19 × 200 80 B 6 MR IV 63 - 19 × 200 80 A 4 MR IV 64 - 19 × 200 80 B 6 MR IV 63 - 19 × 200 80 B 6 MR IV 64 - 19 × 200 80 B 6 MR IV 64 - 19 × 200 80 B 6 MR IV 64 - 19 × 200 80 B 6 MR IV 64 - 19 × 200 80 B 6 MR IV 64 - 19 × 200 80 B 6 MR IV 80 - 19 × 200 80 B 6 MR IV 80 - 19 × 200 80 B A 4 MR IV 64 - 19 × 200 80 B 6 MR IV 81 - 19 × 200 80 B A 4 MR IV 64 - 19 × 200 80 B A 4 MR IV 64 - 19 × 200 80 B A 4 MR IV 64 - 19 × 200 80 B A 4 MR IV 64 - 19 × 200 80 B A 4 MR IV 64 - 19 × 200 80 B A 4 MR IV 64 - 19 × 200 80 B A 4 MR IV 64 - 19 × 200 80 B A 4 MR IV 64 - 19 × 200 80 B A 4 MR IV 64 - 19 × 200 80 B A 4 MR IV 64 - 19 × 200 80 B A 4 MR IV 81 - 19 × 200 80 B A 4 MR IV 64 - 19 × 200 8	50 79,5 79,5 81,2 81,2 50 50 63,4 65 40 63,6 63,6 63,5 63,5 63 63 63 40 40	0,75	215 0,48	4,99 1,32 5,1 2,36 4,09 0,86 4,13 1,5 4,18 2,66 4,18 2,66 3,19 1 3,23 1,8 3,23 1,8 2,56 1,12 2,58 2 2,31 1,26 2,33 2,24 2,31 2,22 2,31 2,22 2,31 1,32 2,33 2,24 1,64 1,66 2,8 1,18 1,9 1,19 3,33	MR V 50 - 14 × 160	16 16 16 16 13 13 13 13 13 10 10 10 16 16 7 7 7 7 13 13 13 10 10 10 46 16 7 7 7 7 7
27.6 0.44 15.3 1.9 28 0.4 13.7 1.4 28 0.4 13.7 1.7 28 0.4 13.7 1.4 28 0.4 13.7 1.7 28 0.4 13.7 1.7	MR IV 50 - 14 × 160 71 C 4 MR IV 50 - 19 × 200 80 A 4 MR V 50 - 19 × 200 80 A 4 MR V 50 - 19 × 200 80 B 6 MR IV 63 - 14 × 160 71 C 4 MR IV 63 - 14 × 160 71 C 4 MR IV 63 - 14 × 160 71 C 4 MR IV 63 - 19 × 200 80 A 4 MR IV 64 - 19 × 200 80 A 4 MR V 63 - 14 × 160 71 C 4 MR V 63 - 19 × 200 80 A 4 MR V 63 - 19 × 200 80 A 4 MR V 63 - 19 × 200 80 A 4 MR V 63 - 19 × 200 80 A 4 MR V 63 - 19 × 200 80 A 4 MR V 64 - 19 × 200 80 B 6 MR V 64 - 19 × 200 80 B 6	50,8 50 32 50,9 50,9 50,8 50,8 50 50		2,34 0,48 2,89 0,47 2,98 0,5 2,88 0,49 2,88 0,49 3,62 0,49 3,55 0,48 3,7 0,47 3,7 0,47 3,7 0,47 4,63 0,51 4,74 0,48 4,67 0,5	198 1,32 155 0,8 160 0,95 162 1,5 162 1,7 128 1,06 130 1,9 121 1,32 121 1,6 116 0,75 107 0,75 105 1,4 98 1 102 1,8	R 2IV 125 - 24 × 200 90 S 6 MR 2IV 100 - 19 × 200 80 B 4 MR 2IV 100 - 19 × 200 80 C 6 MR 2IV 125 - 24 × 200 90 S 6 MR 2IV 126 - 24 × 200 90 S 6 MR 2IV 126 - 24 × 200 90 S 6 MR 2IV 126 - 24 × 200 90 S 6 MR 2IV 126 - 24 × 200 90 S 6 MR 2IV 126 - 24 × 200 90 S 6 MR 2IV 126 - 24 × 200 90 S 6 MR 2IV 126 - 24 × 200 90 S 6 MR IV 127 - 24 × 200 90 S 6 MR IV 100 - 19 × 200 80 C 6 MR 2IV 100 - 19 × 200 80 C 6 MR 2IV 100 - 19 × 200 80 C 6 MR 2IV 100 - 19 × 200 80 C 6 MR IV 100 - 19 × 200 80 C 6 MR IV 100 - 19 × 200 80 C 6 MR IV 100 - 19 × 200 80 C 6 MR IV 100 - 19 × 200 80 C 6 MR IV 105 - 24 × 200 90 S 6	385 484 302 312 312 387 254 243 243 239 202 302 190 193
0.46 36 0.4 10.7 0.75 34.5 0.44 12.2 1,32 34.5 0.42 11.5 1,4 35 0.4 10.9 1,06 36 0.41 11 1,4 34.5 0,45 12,4 2,12 35 0,42 11,4 1,8 35 0,42 11,4 1,8 43.8 0,42 11,4 1,8 43.1 0,45 9,9 1,5 43.8 0,42 9,1 1,4 45 0,42 9 1,7 43.8 0,42 9 1,7 43.8 0,42 9 1,7 43.8 0,42 9 1,7 43.8 0,42 9 1,7 43.8 0,42 9 1,7 43.8 0,42 9 1,7 43.8 0,42 9 1,7 43.8 0,42 9 1,7 43.8 0,42 9 1,7 43.8 0,42 9 1,7 43.8 0,42 9 1,7 43.8 0,42 9 1,7	MR V 40 - 14 × 160 80 B 6 6 MR IV 50 - 19 × 200 80 A 4 4 MR V 50 - 19 × 200 80 A 4 4 MR V 50 - 19 × 200 80 A 4 4 MR V 50 - 19 × 200 80 A 4 4 MR V 63 - 19 × 200 80 A 4 MR V 63 - 19 × 200 80 A 4 MR V 63 - 19 × 200 80 A 4 MR V 63 - 19 × 200 80 A 4 MR V 63 - 19 × 200 80 A 4 MR V 40 - 14 × 160 71 C 4 MR V 40 - 14 × 160 71 C 4 MR V 50 - 19 × 200 80 A 4 MR V 50 - 19 × 200 80 A 4 MR V 50 - 19 × 200 80 A 4 MR V 50 - 19 × 200 80 A 4 MR V 50 - 19 × 200 80 A 4 MR V 50 - 19 × 200 80 A 4 MR V 50 - 19 × 200 80 A 4 MR V 50 - 19 × 200 80 A 4 MR V 50 - 19 × 200 80 A 4 MR V 50 - 19 × 200 80 A 4 MR V 50 - 19 × 200 80 A 4 MR V 50 - 19 × 200 80 A 4 MR V 50 - 19 × 200 80 A 4 MR V 63 - 19 × 200 80 A 4 MR V 63 - 19 × 200 80 A 4 MR V 63 - 19 × 200 80 A 4 MR V 60 - 14 × 160 71 C 4			4.67 0.5 5.42 0.49 5.53 0.52 5.85 0.48 5.53 0.51 5.83 0.51 6.93 0.51 6.93 0.51 7.09 0.49 6.88 0.51 7.37 0.51 8.62 0.51 8.62 0.51 8.75 0.48 8.75 0.48	87 0.75 87 0.85 89 1.6 78 1.06 82 1.4 84 2.36 71 0.95 71 1.12 66 0.7 66 0.85 71 1.8 66 1.4 68 1.9 57 1.06 57 1.25 53 0.75	6 MR IV 100 - 19 × 200 80 B 4 MR IV 100 - 19 × 200 80 C 6 6 MR IV 125 - 24 × 200 90 S 6 6 MR 2IV 80 - 19 × 200 80 B 4 2 MR 2IV 81 - 19 × 200 80 B 4 MR IV 80 - 19 × 200 80 C 6 MR IV 81 - 19 × 200 80 C 6 MR 2IV 100 - 19 × 200 80 B 4 MR IV 100 - 19 × 200 80 B 4 MR IV 100 - 19 × 200 80 C 6	193 258 258 258 253 239 152 154 202 202 127 127 204 190 122 162 162 160 160
0,44 70 0,43 7,9 1,18 70 0,43 5,9 1,18 70 0,43 5,9 1,18 70 0,43 5,9 1,18 70 0,43 5,9 1,18 70 0,44 6 2,12 70 0,44 6 2,12 87.5 0,45 4,93 0,75	MR V 50 - 14 × 160 71 C 4 MR V 50 - 19 × 200 80 A 4 MR V 32 - 11 × 140 71 C 4 MR V 40 - 14 × 160 71 C 4 MR V 40 - 14 × 160 80 A 4 MR V 40 - 14 × 160 80 A 4 MR V 50 - 14 × 160 71 C 4 MR V 50 - 19 × 200 80 A 4	25 25 25 20 20 20 20 20 20 20		8,86 0,51 9,21 0,53 11 0,52 11 0,52 11,1 0,52 11,1 0,52	55 0,95 55 1,12 55 2 44,8 0,7 44,8 0,85 44,4 0,67 44,4 0,75	MR IV 80 - 19 × 200 80 C 6 MR IV 81 - 19 × 200 80 C 6 MR IV 100 - 19 × 200 80 B 4 MR 2IV 63 - 19 × 200 80 B 4 MR 2IV 64 - 19 × 200 80 B 4 MR 1V 63 - 19 × 200 80 C 6	102 102 152 127 127 81,2 81,2 127

Les valeurs en rouge indiquent la puissance thermique nominale Pt_N (température ambiante 40° C, service continu, voir chap. 3.2).

Moteur (cat. TX) avec rendement pas concorme à la classe IE3 (IEC 60034-30).

Puissance nominale et données de plaque se réfèrent au service intermittent S3 70%.

1) Puissance pour service continu S1; pour services S2... S10 il est possible de les **augmenter** (chap. 2b): P₂, M₂ augmentent et fs diminue de façon proportionnelle.

2) Pour la désignation complète dans la commande, voir chap. 3.1.

* Position de montage **B5R**; disponible même pour la position de montage **B5** (voir le tableau du chap. 2b).

P ₁ kW	M ₂	P ₂	M₂ daN m	fs	Riduttore - Motore Gear reducer - Motor 2)	j	P ₁ kW	// 2 min ⁻¹	P ₂ kW	M₂ daN m	fs	Riduttore - Motore Gear reducer - Motor	j
0,75 0,63 0,63	11 11 11.1 11.1 11.1 11.1 11.1 11.1 11	0.52 0.554 0.544 0.554 0.555 0.556 0.552 0.554 0.554 0.555 0	44,4 44,4 44,4 45,8 45,2 36,1 36,1 36,2 36,2 32,9 37 37,1 37,1 34,1 35,4 29,8 29,1 29,1 27,6 6 27,6 6 30,6 29,8 28,5 29,4 23,7 24,1 24,1 23,1 23,1 23,1 23,1 23,1 23,1 23,1 23	2,65 0,71 0,85 0,85 1,86 0,67 0,67 1,32 2,12 0,96 1,18 0,75 0,75 0,75 0,75 1,18 1,47 0,09 1,18 1,18 1,47 1,18 1,18 1,18 1,18 1,18 1,18 1,18 1,1	MR	127 127 127 127 127 127 127 128 1.22 102 103,5 102 103,5 103 103 103 103 103 103 103 103 103 103	0.55	36 35 3 43.18 43.8 56 56 77 70 87.5 58 87.5 108 440 40 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	0,66 0,67 0,65 0,65 0,665 0,666 0,666 0,668 0,688 0,67 0,71 0,7 0,7 0,7 0,7 0,73 0,73 0,73 0,73 0,7	15,5 3,3 15,3 15,3 15,3 15,3 15,3 15,3 1	$\begin{array}{c} 1.7 \\ 2.7 \\ 2.5 \\ 0.67 \\ 1.18 \\ 1.7 \\ 2.5 \\ 0.75 \\ 2.12 \\ 0.95 \\ 1.72 \\ 0.75 \\ 2.12 \\ 0.75 \\ 2.36 \\ 0.75 \\ 1.77 \\ 3 \\ 3 \\ 1.82 \\ 2 \\ 1.4 \\ 2.5 \\ 0.75 \\ 1.77 \\ 3 \\ 3 \\ 1.82 \\ 2 \\ 1.4 \\ 2.5 \\ 0.75 \\ 1.77 \\ 3 \\ 3 \\ 1.82 \\ 2 \\ 1.4 \\ 2.5 \\ 0.95 \\ 1.06 \\ 0.95 \\ 1.06 \\ 0.95 \\ 1.14 \\ 1.06 \\ 0.75 \\ 0.71 \\ 1.7 \\ 1.18 \\ 1.06 \\ 0.75 \\ 1.7 \\ 1.18 \\ 1.06 \\ 0.75 \\ 1.7 \\ 1$	MR	40 25 25 25 25 26 20 20 20 20 20 20 20 20 20 20 20 20 20

Les valeurs en rouge indiquent la puissance thermique nominale $\frac{Pt_N}{t}$ (température ambiante 40°C, service continu, voir chap. 3.2).

Moteur (cat. TX) avec rendement pas concorme à la classe IE3 (IEC 60034-30).

Puissance nominale et données de plaque se réfèrent au service internitent S3 70%.

1) Puissance pour service continu S1; pour services S2... S10 il est possible de les **augmenter** (chap. 2b): P₂, M₂ augmentent et fs diminue de façon proportionnelle.

2) Pour la désignation complète dans la commande, voir chap. 3.1.

* Position de montage **B5R**; disponible même pour la position de montage **B5** (voir le tableau du chap. 2b).

P_1 n_2 P_2 M_2 kW P_3 P_4 P_4 P_5 P_5 P_6 P_6		Riduttore - Motore Gear reducer - Motor	j	kW n	n ₂	M ₂ fs	Gear reducer - Motor
1,1	1.5 3 1.6 3 1.9 4 0.75 6 1.32 1 0,95 7 2 1.6 1.9 2 1.6 1.9 2 1.6 1.9 2 1.6 1.5 1.32 1.6 1.5 1.5 1.25 2.24 0.95 1.12 0.71 0.8 0.71 0.8 1.32 1.6 1.5 1.32 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.5 1.7 0.9 1.6 1.7 1.6 1.5 1.7 1.6 1.7 1.6 1.5 1.7 1.6 1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MR IV 126 - 24 × 200	243 154 154 202 202 190 127 203 193 193 125 162 162 160 102 154 127 127 127 127 127 127 127 127 127 127	22 22 22 22 22 22 22 22 23 23 24 25 26 27 27 28 28 28 28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	2.2 0,79 2.5 0,82 2.5 0,82 2.1 0,86 2.2 0,82 2.1 0,86 2.2 0,82 2.1 0,86 2.2 0,82 2.1 0,86 2.2 0,82 2.3 0,83 2.8 0,83 2.8 0,8 2	34.7 1.3 34.7 1.3 34.7 1.3 35.1 1.9 30.6 0.9 30.6 0.9 28.4 1.1 30.1 0.9 27.3 0.7 27.3 0.7 27.3 0.8 27.8 0.8 27.8 1.0 28.1 1.3 28.1 1.3 28.1 1.9 28.1 1.3 28.1 1.9 28.	MR
13,8	2,24 1,4 7 0,71 6 0,71 6 0,85 8 1,18 8 1,4 6 1,06 6 1,32 7 1,32 7 1,6 7 1,18 9 2,36 2 1,8 4 0,95 1 0,75 1 0,85 8 0,85 2 1,8	MR	63,5 63 81,2 50 50 81,2 80 50 50 50 50 50 63,5 64 40 63,5 63,5	0,88 4 0,76 4 0,75 4 4 4 4 4 4 4 4 4 4 4 4 0,84	35 0.85 36 0.87 3.1 0.89 3.8 0.83 45 0.85 3.8 0.91 3.8 0.85 3.8 0.85 3.8 0.85 3.8 0.85 3.8 0.85 3.8 0.85 3.8 0.85 3.8 0.85 3.8 0.85 3.8 0.85 3.8 0.85 5.6 0.86 5.6 0.86 5.6 0.86 5.6 0.88 5.6 0.88	23,2 2,2 19,8 0,7 18,2 0,6 18 0,8 1,1 18,6 1,3 18,6 1,1 18,6 1,3 19,2 1,2 20,1 2,3 19,1 2,1 19,1 2,1 19,1 2,1 19,1 2,1 19,1 2,1 19,1 2,1 19,1 2,1 19,1 2,1 11,7 0,1 15 1,1 15 1,1	2 MR V 80 - 24 × 200 90 S 4 32 55 MR V 50 - 19 × 200 80 C 4 32 56 MR V 63 - 24 × 200 90 S 4 32 64 MR V 64 - 24 × 200 90 S 4 32 65 MR V 64 - 24 × 200 90 S 4 32 66 MR V 64 - 24 × 200 90 S 4 32 66 MR V 64 - 24 × 200 90 S 4 32 66 MR V 64 - 24 × 200 90 S 4 32 66 MR V 64 - 24 × 200 90 S 4 32 66 MR V 64 - 24 × 200 90 S 4 32 66 MR V 64 - 24 × 200 90 S 4 32 66 MR V 64 - 24 × 200 90 S 4 32 66 MR V 64 - 24 × 200 90 S 4 32 66 MR V 80 - 24 × 200 90 S 4 32 66 MR V 81 - 19 × 200 80 C 4 32 67 MR V 81 - 19 × 200 80 C 4 32 68 MR V 81 - 24 × 200 90 S 4 32 69 MR V 81 - 24 × 200 90 S 4 32 69 MR V 81 - 24 × 200 90 S 4 32 69 MR V 81 - 24 × 200 90 S 4 32 69 MR V 81 - 24 × 200 90 S 4 32 69 MR V 81 - 24 × 200 90 S 4 32 69 MR V 81 - 24 × 200 90 S 4 32 69 MR V 81 - 24 × 200 90 S 4 32 69 MR V 81 - 24 × 200 90 S 4 32 69 MR V 63 - 24 × 200 90 S 4 25 69 MR V 63 - 24 × 200 80 C 4 25
21,9 0,83 36, 22,2 0,79 33.	1 1,6 8 1 8 1,18	MR IV 81 - 24 × 200 90 S 4 MR V 80 - 19 × 200 80 C 4	64 63		56 0,88 56 0,9 56 0,9 70 0,88	15,3 3,3	7 MR V 64 - 24 × 200 90 S 4 25 MR V 80 - 24 × 200 90 S 4 25 MR V 81 - 24 × 200 90 S 4 25 MR V 50 - 19 × 200 80 C 4 20

Les valeurs en rouge indiquent la puissance thermique nominale Pt_N (température ambiante 40° C, service continu, voir chap. 3.2).

Moteur (cat. TX) avec rendement pas concorme à la classe IE3 (IEC 60034-30).

Puissance nominale et données de plaque se réfèrent au service intermittent S3 70%.

¹⁾ Puissance pour service continu S1; pour services S2 ... S10 il est possible de les **augmenter** (chap. 2b): P_2 , M_2 augmentent et fs diminue de façon proportionnelle. 2) Pour la désignation complète dans la commande, voir chap. 3.1.

* Position de montage **B5R**; disponible même pour la position de montage **B5** (voir le tableau du chap. 2b).

P ₁ kW	// ₂ min ⁻¹	P ₂	M₂ daN m	fs	Riduttore - Motore Gear reducer - Motor	j		// 2 min ⁻¹		M₂ daN m	fs	Riduttore - Motore Gear reducer - Motor	j
0,77 0,84	108 108 108	0,93 0,93 0,93 0,93 0,93 0,94 0,94 0,94 0,95 0,95 0,96 0,98	12,7 12,7 12,7 12,7 12,9 10,1 10,1 10,3 10,3 8.3 8.4 8.5 6.5 6.5 6.5 6.7	1,9 1,9 0,75 1,32 1,32 2,24 0,9 1,6 1,6 2,8	MR V 63 - 19 × 200 80 C 4 MR V 64 - 19 × 200 90 S 4 MR V 63 - 24 × 200 90 S 4 MR V 63 - 24 × 200 90 S 4 MR V 63 - 24 × 200 90 L 6 MR V 64 - 24 × 200 90 L 6 MR V 40 - 14 × 160 80 C 4 MR V 50 - 19 × 200 80 C 4 MR V 63 - 19 × 200 80 C 4 MR V 63 - 24 × 200 90 S 4 MR V 63 - 19 × 200 80 C 4 MR V 63 - 19 × 200 80 C 4 MR V 60 - 19 × 200 80 C 4 MR V 50 - 19 × 200 80 C 4 MR V 50 - 19 × 200 90 S 4 MR V 63 - 24 × 200 90 S 4 MR V 63 - 24 × 200 90 S 4 MR V 50 - 19 × 200 80 C 4 MR V 50 - 19 × 200 80 C 4 MR V 50 - 19 × 200 80 C 4 MR V 50 - 19 × 200 80 C 4 MR V 50 - 19 × 200 90 S 4 MR V 50 - 19 × 200 80 C 4 MR V 50 - 19 × 200 90 S 4 MR V 50 - 19 × 200 90 S 4	20 20 20 20 20 20 13 13 16 16 16 16 16 16 13 13 13 13 10 10	1,05	7.2 7.09 8.62 9.21 8.75 9 8.83 9.07 9.07 9 11.3 11.1 11.5 11.1 11.2 11.1	1,05 1,09 1,05 1,06 1 1,04 1,15 1,07 1,07 1,09 1,09 1,09 1,09 1,09 1,09 1,11	139 146 116 110 110 110 125 113 113 116 116 89 94 90 92 92 94 93 96	1 0,75 0,85 1,8 1,6 1,9 1,8 2,12 0,71 1,4 1,32 0,95 1,12 1,9 2,12	MR IV 126 - 24 × 200	125 125 127 162 152 160 100 159 154 154 1100 100 80 127 122 127 80 81,2 125 81,1
1,5	175 175 175 200 200 200 215 215 280 400 400	0,98 0,98 0,98 0,96 0,97 0,97 0,98 0,99 1	2,39	1,12 2 1,4 2,36 1,7 3	MR V 50 - 19 × 200 80 B 2 MR V 63 - 19 × 200 80 B 2 MR V 40 - 14 × 160 80 C 4 MR V 50 - 19 × 200 90 S 4 MR V 40 - 14 × 160 80 B 2 MR V 40 - 14 × 160 80 B 2 MR V 50 - 19 × 200 80 B 2 MR V 40 - 14 × 160 80 B 2 MR V 40 - 14 × 160 80 B 2 MR V 50 - 19 × 200 80 B 2 MR V 40 - 14 × 160 80 B 2 MR V 50 - 19 × 200 80 B 2 MR V 50 - 19 × 200 80 B 2 MR V 40 - 14 × 160 80 B 2 MR V 50 - 19 × 200 80 B 2 MR V 50 - 19 × 200 80 B 2	16 16 16 7 7 7 13 13 10 10 7 7	1,13 1,11 1,13 1,13	13.8 14 14.1 14.1 13.8 13.8 14.1 14.2 14.3 14.3 14.3	1,05 1,08 1,08 1,18 1,11 1,11 1,11 1,13	74 71 74 81 77 76 75 76 71 71 77 73 73	0,71 0,75 0,9 1,4 1,5 1,32 1,5 1,6 1,06 1,06 2,5 1,7	MR IV 81 - 19 × 200 90 L 4 MR IV 81 - 24 × 200 90 L 4 MR IV 80 - 24 × 200 90 L 6 MR 2IV 100 - 24 × 200 90 L 6 MR IV 100 - 24 × 200 90 L 4 MR IV 100 - 24 × 200 90 L 4 MR IV 100 - 24 × 200 90 L 4 MR IV 100 - 24 × 200 90 L 6 MR IV 100 - 24 × 200 90 L 6 MR IV 100 - 24 × 200 90 L 6 MR IV 100 - 28 × 250 100 LA 6 MR V 100 - 28 × 250 100 LA 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6	102 102 100 64 64 102 102 102 64 63,5 63 63 100 63 63 81,2
	4.67 4.67 4.5 4.5 5.42	1,02 0,97 0,97 1 1,03 1,03	204 204 218 218 178	0,8 1,25 1,4 1,06 1,25 0,8 0,9 0,9 1,06 1,6 1,9 0,75	MR 2IV 125 - 24 × 200 90 L 4 MR 2IV 126 - 24 × 200 90 L 6 MR IV 126 - 24 × 200 90 L 6 MR IV 126 - 24 × 200 90 L 6 MR IV 160 - 28 × 250 100 L A 6 MR 2IV 125 - 24 × 200 90 L 4 MR 2IV 125 - 24 × 200 90 L 4 MR 2IV 126 - 24 × 200 90 L 4 MR IV 126 - 24 × 200 90 L A 6 MR IV 125 - 24 × 200 90 L A 6 MR IV 126 - 28 × 250 100 L A 6 MR IV 126 - 28 × 250 100 L A 6 MR IV 126 - 28 × 250 100 L A 6 MR IV 126 - 24 × 200 90 L C 6 MR IV 126 - 24 × 200 90 L C 6 MR IV 126 - 28 × 250 100 L A 6 MR IV 126 - 28 × 250 100 L A 6 MR IV 160 - 28 × 250 100 L A 6 MR IV 161 - 28 × 250 100 L A 6 MR IV 161 - 28 × 250 100 L A 6 MR IV 161 - 28 × 250 100 L A 6	481 385 385 243 243 252 252 312 312 197 197 193 193 200 200 258	1,23 1,22 1,23 1,24 1,24 1,23 1,23	17,5 17,2 17,5 18 18 18 18 17,6 17,2 18 18 18 22,1	1,09 1,1 1,09 1,12 1,12 1,07 1,07 1,07 1,07 1,15 1,15 1,11 1,11 1,14	60 61 60 60 57 57 57 62 63 61 59 60 49,4	0,8 1 0,95 0,95 1,18 0,71 0,85 0,71 1,9 1,7 1,9 1,32 1,32 1,32 1,32 1,12	MR IV 80 - 24 × 200 90 L 4 MR IV 81 - 19 × 200 90 L 4 MR IV 81 - 24 × 200 90 L 4 MR IV 80 - 24 × 200 90 L 6 MR IV 81 - 24 × 200 90 L 6 MR V 80 - 28 × 250 100 L 6 MR V 81 - 24 × 200 90 L 6 MR V 80 - 24 × 200 90 L 6 MR V 81 - 24 × 200 90 L 6 MR V 81 - 24 × 200 90 L 6 MR V 81 - 24 × 200 90 L 6 MR IV 100 - 19 × 200 90 L 6 MR IV 100 - 28 × 250 100 L 6 MR IV 100 - 28 × 250 100 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6	80 81,2 80 50 50 50 50 50 50 79,5 81,2 50 50 50 50
	5,76 5,76 5,76 5,76 5,83 5,63 5,63 7,37 7,09 6,9 7,26 7,26 7,2	1,01 1,03 0,99 0,99 1,02 1,02 1,03 1,03 1,07 1,07 1,05 1,01 1,01	174 180 164 169 169 168 168 181 145 131 136 146 146 137 137	1,32 1,25 0,95 1,06 1,18 1,18 1,14 2,24 2,65 0,95 0,71 0,71 1,5 1,7 1,18 1,4 1,32	MR 2IV 125 - 24 × 200	254 254 165 243 243 156 156 154 154 160 202 190 127 203 203 193 193 125 125	0,96	21,9 22,1 21,9 22,2 22,5 22,5 22,5 22,5 22,5 22,5 22	1,13 1,14 1,13 1,07 1,07 1,11 1,11 1,11 1,11 1,15 1,15 1,13 1,13	49,2 49,4 49,2 46,1 47,3 47,3 47,3 51 47,8 48,8 48,8 38,7 38,7 38,7 38,7 38,3	1 1,32 1,18 0,75 0,85 0,95 1,12 0,95 1,12 1,4 1,8 0,71 0,85 0,75 1,32 1,6 0,95	MR IV 80 - 24 × 200 90 L 4 MR IV 81 - 19 × 200 90 L 4 MR IV 81 - 24 × 200 90 L 4 MR V 80 - 24 × 200 90 L 4 MR V 80 - 24 × 200 90 L 4 MR V 80 - 28 × 250 100 LA 6 MR V 81 - 28 × 250 100 LA 6 MR V 80 - 24 × 200 90 L 6 MR V 81 - 24 × 200 90 L 6 MR V 81 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR V 100 - 24 × 200 90 L 6 MR IV 63 - 24 × 200 90 L 4 MR V 64 - 24 × 200 90 L 4 MR V 64 - 24 × 200 90 L 4 MR IV 81 - 24 × 200 90 L 4 MR IV 81 - 24 × 200 90 L 4 MR IV 81 - 24 × 200 90 L 4 MR IV 81 - 24 × 200 90 L 4	64 63,5 64 63 63 40 40 40 40 63,5 63 40 40 50 50 50 50 50

Les valeurs en rouge indiquent la puissance thermique nominale $\frac{Pt_N}{t}$ (température ambiante 40°C, service continu, voir chap. 3.2).

Moteur (cat. TX) avec rendement pas concorme à la classe IE3 (IEC 60034-30).

Puissance nominale et données de plaque se réfèrent au service internitent S3 70%.

1) Puissance pour service continu S1; pour services S2... S10 il est possible de les **augmenter** (chap. 2b): P₂, M₂ augmentent et fs diminue de façon proportionnelle.

2) Pour la désignation complète dans la commande, voir chap. 3.1.

* Position de montage **B5R**; disponible même pour la position de montage **B5** (voir le tableau du chap. 2b).

P ₁ n mir		M ₂ fs	Riduttore - Motore Gear reducer - Motor	j	P ₁ kW	M ₂ min ⁻¹	P ₂ M kW daN		Riduttore - Motore / Gear reducer - Motor
1,5 28, 28, 28, 28, 27,	1 1,15 3 1 1,15 3 1 1,15 3 6 1,24 4	1,4 19 1,18 19 1,4 13 2,36	MR V 80 - 28 × 250 100 LA 6 MR V 81 - 28 × 250 100 LA 6 MR V 80 - 24 × 200 90 LC 6 MR V 81 - 24 × 200 90 LC 6 MR IV 100 - 24 × 200 90 L 4	32 32 32 32 32 50,8	1,5	280 280 400 400	1,32 4,5 1,33 4,5 1,36 3,2 1,36 3,2	5 1,7 5 1,7 4 1,25 5 2,24	MR V 40 - 14 × 160 80 C 2 10 MR V 50 - 19 × 200 80 C 2 10 MR V 50 - 19 × 200 90 S 2 10 MR V 40 - 14 × 160 80 C 2 7 MR V 50 - 19 × 200 80 C 2 7
1,24 35 1,24 35 1,08 35 1,08 35 1,06 36	1,22 33 1,22 33 1,14 3 1,14 3 1,16 30	3,2 0,71 3,2 0,85 11 0,67 11 0,8 0,7 0,85	MR IV 63 - 24 × 200 90 L 4 MR IV 64 - 24 × 200 90 L 4 MR V 63 - 24 × 200 90 L 4 MR V 64 - 24 × 200 90 L 4 MR V 63 - 24 × 200 100 LA * 6	50 40 40 40 40 25		3.64 3.64 3.57 3,57	1,36 3,2 1,23 323 1,23 323 1,2 323 1,24 333	3 0,75 3 0,85 2 1 2 1,18	MR V 50 - 19 × 200 90 S 2 7 MR 2IV 125 - 24 × 200 90 LB 4 385 MR 2IV 126 - 24 × 200 90 LB 4 385 MR IV 160 - 28 × 250 100 LB 6 252 MR IV 161 - 28 × 250 100 LB 6 252 MR IV 200 - 28 × 250 100 LB 6 252
1,06 36 1,06 36 1,06 36 34, 34,	5 1,16 30 6 1,16 30 5 1,24 34 6 1,24 33 5 1,24 34),7 1 1,5 1,5 3,7 1,32 1,5 1,8	MR IV 80 - 24 × 200 90 L 4 MR IV 81 - 19 × 200 90 L * 4	25 25 25 40,6 40 40,6		4,49 4,49 4,57 4,5	1,25 26 1,25 26 1,19 25 1,27 26 1,27 26	7 0,85 7 1 0 0,75 9 1,32	MR 2IV 125 - 24 × 200 90 LB 4 312 MR 2IV 126 - 24 × 200 90 LB 4 312 MR IV 126 - 28 × 250 100 LB 6 197 MR IV 160 - 28 × 250 100 LB 6 200 MR IV 161 - 28 × 250 100 LB 6 200
35 35 36 36 36 34 34	5 1,16 3 1,16 3 1,18 3 1,18 3 1,18 3 1,18 3 1,18 3 1,18 3 1,18 3	I,7 1,5 I,4 1,6 I,4 1,9 I,4 1,6	MR V 80 - 24 × 200 90 L 4 MR V 81 - 24 × 200 90 L 4 MR V 80 - 28 × 250 100 LA 6 MR V 81 - 28 × 250 100 LA 6 MR V 80 - 24 × 200 90 LC 6 MR V 81 - 24 × 200 90 LC 6 MR IV 100 - 24 × 200 90 L 4	40 40 40 25 25 25 25 40,6 40		5,52 5,47 5,47 5,76 5,76 5,76 5,76	1,24 21: 1,24 21: 1,27 22: 1,27 22: 1,22 20: 1,26 20: 1,26 20: 1,31 22:	5 1,06 2 1 2 1,18 3 0,75 3 0,85 9 0,85 9 0,95	MR IV 125 - 28 × 250 100 LB 6 156
1,17 1,17 43, 43, 43, 43, 43, 43,	8 1,24 2 8 1,16 25 8 1,16 25 8 1,26 27 8 1,26 27 8 1,19 2 8 1,19 2	5,4 0,85 5,4 1 7,5 1,7 7,5 2,12 6 1,6 6 1,9	MR V 64 - 24 × 200 90 L 4 MR V 63 - 24 × 200 90 L 4 MR V 64 - 24 × 200 90 L 4 MR IV 80 - 24 × 200 90 L 4 MR IV 81 - 24 × 200 90 L 4 MR V 80 - 24 × 200 90 L 4 MR V 80 - 24 × 200 90 L 4 MR V 81 - 24 × 200 90 L 4	32 32 32 32 32 32 32 32 32		5.63 6.93 6.9 7.26 7,26 7,2 7,2	1,31 223 1,3 179 1,3 180 1,3 180 1,28 160 1,28 160 1,29 170 1,29 170	3 2,12 9 0,75 0 1,18 0 1,4 9 1 9 1,18 2 1,12 2 1,32	MR IV 161 - 28 × 250 100 LB 6 160 MR 2IV 100 - 24 × 200 90 LB 4 203 MR 2IV 125 - 24 × 200 90 LB 4 203 MR 1V 126 - 24 × 200 90 LB 4 203 MR IV 125 - 24 × 200 90 LB 4 193 MR IV 126 - 24 × 200 90 LB 4 193 MR IV 125 - 28 × 250 100 LB 6 125 MR IV 126 - 28 × 250 100 LB 6 125
0,84 56 56 56, 56,	6 1,2 20 6 1,2 20 8 1,25 21 6 1,22 20),4 1,06),4 1,25	MR V 64 - 24 × 200 90 L 4 MR V 63 - 24 × 200 100 LA * 6 MR V 80 - 24 × 200 90 L 4	25 25 25 16 25 25		7,09 8,62 9,21 9	1,34 18 1,34 18 1,29 14 1,31 13 1,28 13 1,42 15	2,5 3 0,85 5 0,8 6 0,67	MR IV 161 - 28 × 250 100 LB 6 127 MR 2IV 100 - 24 × 200 90 LB 4 162 MR IV 100 - 19 × 200 90 LB 4 152
0,92 70 70 70 69, 69, 69,	1,27 17 1,27 17 2 1,27 17 2 1,27 17 2 1,27 17	7,3 1,12 7,3 1,32 7,6 1,5 7,6 1,25 7,6 1,5	MR V 64 - 24 × 200 90 L 4 MR V 64 - 24 × 200 100 LA * 6 MR V 63 - 24 × 200 90 LC 6 MR V 64 - 24 × 200 90 LC 6	20 20 20 13 13		8,83 9,07 9,07 11 11,5	1,42 15- 1,32 13: 1,32 13: 1,34 11: 1,34 11: 1,3 11:	1,5 1,32 1,6 1,6 1,12 1,06	MR 2IV 126 - 24 × 200 90 LB 4 159 MR IV 125 - 24 × 200 90 LB 4 154 MR IV 126 - 24 × 200 90 LB 4 154 MR 2IV 100 - 24 × 200 90 LB 4 127 MR IV 100 - 19 × 200 90 LB 4 122
1,18 87, 87, 87, 87, 87,	1,28 17 1,28 17 5 1,26 13 5 1,28 1 5 1,28 1 5 1,3 14	7,5 2,12 7,5 2,5 8,8 0,85 4 1,4	MR V 80 - 24 × 200 90 L 4 MR V 81 - 24 × 200 90 L 4 MR V 50 - 19 × 200 90 L 4 MR V 63 - 24 × 200 90 L 4 MR V 64 - 24 × 200 90 L 4 MR V 80 - 24 × 200 90 L 4	20 20 16 16 16 16	1,13	11,3 11,2 11,2 11,1 11,1 14,1	1,33 11; 1,35 11; 1,35 11; 1,37 11; 1,37 11; 1,34 91	3 0,9 5 1,5 5 1,8 3 1,7 3 2 0,71	MR IV 100 - 28 × 250 100 LB 6 80 MR IV 125 - 24 × 200 90 LB 4 125 MR IV 126 - 24 × 200 90 LB 4 125 MR IV 125 - 28 × 250 100 LB 6 81,1 MR IV 126 - 28 × 250 100 LB 6 81,1 MR IV 81 - 24 × 200 100 LB 6 64
0,89 14 14	8 1,29 11 8 1,3 11 8 1,3 11 0 1,23 8 0 1,3 8	1,4 1 1,5 1,6 1,5 1,9 ,4 0,67 ,9 1,18 ,1 2	MR V 50 - 19 × 200 90 L * 4 MR V 63 - 24 × 200 90 L 4 MR V 64 - 24 × 200 90 L 4 MR V 40 - 14 × 160 80 C * 2 MR V 50 - 19 × 200 90 L * 4	13 13 13 20 10		13,8 14,1 14,3 14	1,37 95 1,36 94 1,37 93	1,18 1,06 1,25 0,85 2	MR IV 100 - 24 × 200 90 LB 4 102 MR IV 100 - 28 × 250 100 LB 6 64 MR V 100 - 28 × 250 100 LB 6 63 MR IV 125 - 24 × 200 90 LB 4 100
1,15 17. 17. 17. 17. 17. 17.	5 1,29 7 5 1,3 7 5 1,3 7 5 1,32 7	7 0,71 ,1 1,25 ,1 1,32 ,2 2,12 ,2 2,12	MR V 40 - 14 × 160 80 C · 2 MR V 50 - 19 × 200 80 C 2 MR V 50 - 19 × 200 90 S · 2 MR V 63 - 19 × 200 80 C 2 MR V 63 - 24 × 200 90 S 2	16 16 16 16 16	1,22 1,22	14,3 17,2 17,2 17,5 18	1,35 90 1,36 75 1,36 75 1,35 73 1,38 73 1,38 73	1,6 0,71 0,85 0,75 0,8	MR
1,25 21 21 21 21 21 21 21	0 1,36 6 5 1,31 5 5 1,32 5 5 1,32 5 5 1,33 5	,8 0,85	MR V 63 - 24 × 200 90 L 4 MR V 40 - 14 × 160 80 C 2 MR V 50 - 19 × 200 80 C 2 MR V 50 - 19 × 200 90 S 2 MR V 63 - 19 × 200 80 C 2	7 7 13 13 13 13 13	1,37	18 17,6 17,2 18 17,9	1,32 70 1,42 77 1,39 77 1,37 73	0,71 1,5 1,4 1,12 2,12	MR V 81 - 28 × 250 100 LB 6 50 MR IV 100 - 19 × 200 90 LB 4 79,5 MR IV 100 - 24 × 200 90 LB 4 81,2 MR V 100 - 28 × 250 100 LB 6 50 MR IV 125 - 24 × 200 90 LB 4 78,1

Les valeurs en rouge indiquent la puissance thermique nominale Pt_N (température ambiante 40° C, service continu, voir chap. 3.2).

Moteur (cat. TX) avec rendement pas concorme à la classe IE3 (IEC 60034-30).

Puissance nominale et données de plaque se réfèrent au service intermittent S3 70%.

¹⁾ Puissance pour service continu S1; pour services S2 ... S10 il est possible de les **augmenter** (chap. 2b): P_2 , M_2 augmentent et fs diminue de façon proportionnelle. 2) Pour la désignation complète dans la commande, voir chap. 3.1.

* Position de montage **B5R**; disponible même pour la position de montage **B5** (voir le tableau du chap. 2b).

P ₁ kW	//2 min ⁻¹	P ₂	M₂ daN m	fs			tore - Moto educer - Mo 2)		j	<i>P</i> kV 1)	V	// 2 min ⁻¹	P ₂ kW	M₂ daN m	fs				ore - Moto lucer - M		j
1,85 1,36 1,35	21.9	1,4 1,41 1,39	74 61 61	0,9 0,8	MR MR MR	IV 80 - IV 80 -	- 28 × 250 - 19 × 200 - 24 × 200	90 LB * 4 90 LB 4	50 63,5 64	1,85		200 215 215	1,67 1,63 1,64	8 7,2 7,3	1,18 2	MR MR MR	V	50 - 63 -	24 × 200 19 × 200 24 × 200	90 SB * ;	2 13
1,36 1,35 1,32 1,36 1,52	21.9 22.2 22.5	1,41 1,39 1,32 1,38	61 61 57 58	1 0,71 0,75	MR MR MR MR	V 81 - V 81 - V 80 -	- 19 × 200 - 24 × 200 - 24 × 200 - 28 × 250	90 LB 4 90 LB 4 100 LB 6	63,5 64 63 40			280 280 400 400	1,64 1,67 1,68 1,7	5,6 5,7 4,01 4,05	2,36 1,8	MR MR MR MR	V V V	63 - 50 -	19 × 200 24 × 200 19 × 200 24 × 200	90 SB * 3	2 10 2 10 2 7 2 7
1,02	22,5 22,1 22,2 22,5 22,5	1,38 1,44 1,37 1,42 1,43	58 63 59 60 61		MR	V 100 - V 100 - V 100 -	- 28 × 250 - 24 × 200 - 24 × 200 - 28 × 250 - 28 × 250	90 LB 4 90 LB 4 100 LB 6	40 63,5 63 40 40	2,2		3,64 3,57 3,57	1,46 1,43 1,43	384 383 383	0,71 0,85 0,95	MR MR MR	2IV IV	126 - 160 - 161 -	24 × 200 28 × 250 28 × 250	90 LC 112 M 112 M	4 385 6 252 6 252
0,96 1,49 1,49	28 28 28	1,4 1,43 1,43	47,7 48,9 48,9	0,67 1,06 1,25	MR MR MR	IV 64 - IV 80 - IV 81 -	- 24 × 200 - 24 × 200 - 24 × 200	90 LB 4 90 LB 4 90 LB 4	50 50 50			3,57 4,49 4,49 4,5	1,48 1,49 1,49 1,51	395 317 317 320	1,5 0,71 0,85 1,12	MR MR	2IV :	125 - 126 -	28 × 250 24 × 200 24 × 200 28 × 250	90 LC -	6 252 4 312 4 312 6 200
1,49 1,49 1,49	28	1,39 1,39 1,42 1,42 1,54	47,2 47,2 48,1 48,1 53	0,95 0,95		V 81 - V 80 - V 81 -	- 24 × 200 - 24 × 200 - 28 × 250 - 28 × 250 - 19 × 200	100 LB 6 100 LB 6	50 50 32 32 50,9			4,5 4,5 5,53 5,53	1,51 1,55 1,51 1,51	320 329 261 261	1,32 2,24 0,85 1	MR MR	IV 2	200 - 125 -		112 M 100 LA	6 200 6 200 4 253 4 253
4.04	27,6 28 28,1	1,53 1,42 1,45	53 48,6 49,2	1,9 1,5 1,9	MR MR MR	V 100 - V 100 - V 100 -	- 24 × 200 - 24 × 200 - 28 × 250	90 LB 4 90 LB 4 100 LB 6	50,8 50 32			5,76 5,76 5,76 5,56	1,45 1,5 1,5 1,5	241 248 248 257	0,71 0,71 0,8 1,12	MR MR MR	IV IV	126 - 125 - 126 -	24 × 200 28 × 250 28 × 250	90 LC 112 M 112 M	4 243 6 156 6 156 4 252
1,24 1,06 1,06	36	1,5 1,43 1,43 1,53 1,52	41 37,8 37,8 42,5 41,6	0,67 0,8 1,18	MR	V 63 - V 64 - IV 80 -	- 24 × 200 - 19 × 200	100 LB * 6 100 LB * 6	40 25 25 40,6 40			5,56 5,63 5,63 6,8	1,5 1,56 1,56 1,51	257 265 265 212	1,32 1,5 1,8 0,9	MR MR	IV :	160 - 161 -	28 × 250 28 × 250	112 M 112 M	4 252 6 160 6 160 4 206
	34,5 35 35 35	1,52 1,53 1,52 1,43 1,43	42,5 41,6 39,1	1,4 1,32 1	MR MR MR	IV 81 - IV 81 - V 80 -	- 24 × 200 - 19 × 200 - 24 × 200 - 24 × 200 - 24 × 200	90 LB * 4 90 LB 4 90 LB 4	40,6 40 40 40			6,8 6,9 6,9 7,11	1,51 1,55 1,55 1,49	212 214 214 199	1,06 1	MR MR MR	2IV 2IV 2IV	126 - 125 - 126 -		100 LA 90 LC 90 LC	4 206 4 203 4 203 4 197
	36 36 34,5 35	1,46 1,46 1,55 1,47	38,7 38,7 43,1 40	1,25 1,5	MR MR	V 80 - V 81 - IV 100 -	- 28 × 250 - 28 × 250 - 24 × 200 - 24 × 200	100 LB 6	25 25 40,6 40			7.11 7.26 7.26 7.2	1,49 1,53 1,53 1,54	199 201 201 204	0,85 0,8 0,95 0,9	MR MR MR	IV : IV : IV :	126 - 125 - 126 - 125 -	28 × 250 24 × 200 24 × 200 28 × 250	100 LA 90 LC 90 LC 112 M	4 197 4 193 4 193 6 125
1,34 1,34 1,17 1,17	43.8 43.8	1,43	33,3 33,3 31,3 31,3	0,9 0,67	MR MR MR MR	IV 63 - IV 64 - V 63 -	- 24 × 200 - 24 × 200 - 24 × 200 - 24 × 200	90 LB 4 90 LB 4 90 LB 4 90 LB 4	32 32 32 32 32			7,2 7 7 7,09	1,54 1,57 1,57 1,59	204 214 214 215	1,12 1,5 1,8 1,8	MR MR MR	IV IV	160 - 161 - 160 -	28 × 250 28 × 250	100 LA 100 LA 112 M	6 125 4 200 4 200 6 127
.,	43.8 43.8 43.8 43.8	1,55 1,55 1,47 1,47	33,9 33,9 32,1 32,1	1,4 1,7 1,25 1,5	MR MR MR MR	IV 80 - IV 81 - V 80 -	- 24 × 200 - 24 × 200 - 24 × 200 - 24 × 200	90 LB 4 90 LB 4 90 LB 4 90 LB 4	32 32 32 32 32			7.09 8.62 8.5 8.5	1,54 1,57 1,57	170 177 177	2,12 0,71 1,18 1,4	MR MR MR	2IV : 2IV : 2IV :	100 - 125 - 126 -	28 × 250 24 × 200 28 × 250 28 × 250	90 LC 100 LA 100 LA	6 127 4 162 4 165 4 165
1,3 1,3	43,8 56 56 56	1,49 1,48	32,6 25,2 25,2 25,7	2,5 0,85 1		V 63 - V 64 -	- 24 × 200 - 24 × 200 - 24 × 200 - 24 × 200	90 LB 4 90 LB 4	32 25 25 25			8,96 8,96 9,07 9,07	1,57 1,57	166 165 165	1,12 1,12 1,32	MR MR MR	IV IV IV	126 - 125 - 126 -	28 × 250 24 × 200 24 × 200	100 LA 90 LC 90 LC	4 156 4 156 4 154 4 154
	56 70 70 70 70	1,51 1,56	25,7 21,3 21,3 21,6	1,9 0,9 1,12	MR MR	V 81 - V 63 - V 64 -	- 24 × 200 - 24 × 200 - 24 × 200 - 24 × 200	90 LB 4 90 LB 4 90 LB 4 90 LB 4	25 20 20 20			8,87 8,87 8,75 8,75	1,57 1,57 1,62 1,62	177	1,06 1,32 2,12 2,5	MR MR MR	IV : IV :	126 - 160 - 161 -	28×250	112 M 100 LA 100 LA	6 101 6 101 4 160 4 160
1,18	70 87.5 87.5	1,58 1,56 1,58	21,6 17	2 0,71 1,18	MR MR MR	V 81 - V 50 - V 63 -	- 24 × 200 - 19 × 200 - 24 × 200 - 24 × 200	90 LB 4 90 LB * 4 90 LB 4	20 16 16 16			11 11,3 11,2	1,6 1,55 1,58 1,6	138 134 134 137	0,95 0,67 0,75 1,25	MR MR MR	IV ·	100 - 100 - 125 -	24 × 200 24 × 200 28 × 250 28 × 250	90 LC 112 M 100 LA	4 127 4 127 6 80 4 125
1,29		1,6 1,6 1,58	17,5 17,5 14,1	2,65 0,8	MR MR MR	V 80 - V 81 - V 50 -	- 24 × 200 - 24 × 200 - 19 × 200	90 LB 4 90 LB 4 90 LB * 4	16 16 13			11,2 11,2 11,2 11,1 11,1	1,6 1,6 1,6 1,63 1,63	137 137 137 141 141		MR	IV : IV :	125 - 126 - 125 -	28 × 250 24 × 200 24 × 200 28 × 250 28 × 250	90 LC -	4 125 4 125 4 125 6 81,1 6 81,1
	108 108 108 108	1,6 1,6 1,62 1,62	14,2 14,2 14,4 14,4	2,5 3	MR MR MR	V 64 - V 80 - V 81 -	- 24 × 200 - 24 × 200 - 24 × 200 - 24 × 200	90 LB 4 90 LB 4	13 13 13 13			11 11 13.8	1,66 1,66 1,73	143 143 120	2,5 3 0,95	MR MR MR	IV : IV : 2IV :	160 - 161 - 100 -	28 × 250 28 × 250 24 × 200	100 LA 100 LA 90 LC	4 127 4 127 4 102
1,4	140 140 140 175	1,61 1,64 1,64 1,61	11 11,2 11,2 8,8	0,95 1,6 1,9 1	MR MR MR MR	V 63 - V 64 -	- 19 × 200 - 24 × 200 - 24 × 200 - 19 × 200	90 LB * 4 90 LB 4 90 LB 4	10 10 10 10			14 13,8 14,1 14,3 13,8	1,59 1,61 1,63 1,56	108 112 110 104 113	0,71	MR MR MR	IV : V	100 - 100 - 100 -	24 × 200 28 × 250 28 × 250	112 M	4 100 4 102 6 64 6 63 4 101
	175 175 200	1,62 1,62 1,65	8,9 8,9	1,7	MR MR	V 63 - V 64 -	- 24 × 200 - 24 × 200 - 19 × 200	90 SB 2 90 SB 2	16 16 7			13.8 13.8 14 14	1,64 1,64 1,67 1,67	113 114	1,8 1,7		IV :	126 - 125 -	28 × 250 24 × 200	100 LA 90 LC	4 101 4 101 4 100 4 100

Les valeurs en rouge indiquent la puissance thermique nominale $\frac{Pt_N}{t}$ (température ambiante 40°C, service continu, voir chap. 3.2).

Moteur (cat. TX) avec rendement pas concorme à la classe IE3 (IEC 60034-30).

Puissance nominale et données de plaque se réfèrent au service internitent S3 70%.

1) Puissance pour service continu S1; pour services S2... S10 il est possible de les **augmenter** (chap. 2b): P₂, M₂ augmentent et fs diminue de façon proportionnelle.

2) Pour la désignation complète dans la commande, voir chap. 3.1.

* Position de montage **B5R**; disponible même pour la position de montage **B5** (voir le tableau du chap. 2b).

P ₁	M ₂ fs daN m	Riduttore - Motore Gear reducer - Motor	i	P ₁			Riduttore - Motore / Gear reducer - Motor	
2.2 1,63 14.3 1,65 14.3 1,65 17.5 1,65 17.2 1,66 18 1,69 18 1,63 17.3 1,7 17.9 1,79 18 1,66 18 1,66 18 1,66 21.9 1,65 22.1 1,62 22.2 1,63 22.2 1,63 22.2 1,63 22.1 1,82 22.2 1,67 22.1 1,82 22.1 1,69 22.1 1,82 22.1 1,69 22.1 1,82 22.2 1,67 22.3 1,69 22.1 1,82 22.1 1,69 22.1 1,82 22.1 1,69 22.1 1,69 28 1,65 1,49 28 1,65 1,74 35 1,74 35 1,81 35 1,74 35 1,84 36 1,74 35 1,84 36 1,74 37 1,84 38 1,74 38 1,74 38 1,74 38 1,74 38 1,74 38 1,74 38 1,74 38 1,74 38 1,74 39 1,74	90 1,06 MR MR 92 1,18 MR 88 1,5 MR 88 1,5 MR 94 1,4 MR 72 0,75 MR 74 1,4 MR 74 1,5 MR 70 0,95 MR 70 0,95 MR 72 1,25 MR 72 1,25 MR 72 1,26 MR 72 1,9 MR 72 1,9 MR 75 1,06 MR 75 1	R V 125 - 28 × 250 112 M 6 R V 126 - 28 × 250 112 M 6 R V 160 - 28 × 250 112 M 6 R V 100 - 28 × 250 112 M 6 R V 100 - 28 × 250 112 M 6 R V 100 - 28 × 250 112 M 6 R V 100 - 28 × 250 112 M 6 R V 125 - 28 × 250 112 M 6 R V 125 - 28 × 250 112 M 6 R V 126 - 28 × 250 112 M 6 R V 126 - 28 × 250 112 M 6 R V 126 - 28 × 250 112 M 6 R V 126 - 28 × 250 112 M 6 R V 100 - 28 × 250 112 M 6 R V 100 - 28 × 250 112 M 6 R V 100 - 28 × 250 100 LA 4 R V 100 - 28 × 250 100 LA 4 R V 100 - 28 × 250 100 LA 4 R V 125 - 28 × 250 100 LA 4 R V 100 - 28 × 25	63 63 63 63 80 81,2 50 81,1 78,1 50 50 64 40 63,5 63 40 63,4 63,4 63 50 50 50 50 50 50 50 64 40 40 63,5 50 50 50 50 50 50 50 50 50 50 50 50 50	2,2 1,67 70 1,67 70 70 70 70 70 70 70 70 70 70 70 70 70 7	2 1,89 26 1,9 2 1,88 20 1,88 20 1,88 20 1,81 20 1,91 20 1,91 20 1,91 20 1,91 16 1,91 16 1,93 17 1,95 13 1,97 13 1,98 10 1,99 9, 1,99 9, 1,99 9, 1,99 9, 1,99 9, 1,99 6, 1,99 6, 1,90 6, 1,9	33.7.7.7.7.7.1.1.6 5.5.5.5.5.8.8.8.8. 9.9.9.9.1.1.1.1.1. 33.3.3.4.4.4.4.4.4.4.4.5.5.6. 5.5.5.5.6.7.7.7.8.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	MR V 63 - 24 × 200	
36 1,78 35 1,76 1.34 43.8 1,82 1,17 43.8 1,85 43.8 1,75 43.8 1,75 43.8 1,75 43.8 1,75 43.8 1,75 43.8 1,75 43.8 1,75 43.8 1,75 43.8 1,75 43.8 1,75 43.8 1,76 1,3 56 1,76 1,3 56 1,76 56 1,79	47,1 2 MR 39,6 0,75 MR 37,2 0,67 MR 40,3 1,4 MR 38,2 1,06 MR 38,2 1,25 MR 38,2 1,25 MR 38,2 1,25 MR 38,8 2,12 MR 38,8 2,12 MR 38,8 2,12 MR 39,9 0,75 MR 29,9 0,75 MR 29,9 0,85 MR 30,5 1,4 MR 30,5 1,4 MR 30,5 1,4 MR	R V 100 - 28 × 250 112 M 6 R V 125 - 28 × 250 100 LA 4 R IV 64 - 24 × 200 90 LC 4 R IV 80 - 24 × 200 90 LC 4 R IV 81 - 24 × 200 90 LC 4 R IV 81 - 28 × 250 100 LA 4 R IV 81 - 28 × 250 100 LA 4 R IV 80 - 24 × 200 90 LC 4 R IV 80 - 24 × 200 90 LC 4 R IV 80 - 28 × 250 100 LA 4 R IV 100 - 28 × 250 100 LA 4 R IV 100 - 28 × 250 100 LA 4 R IV 63 - 24 × 200 90 LC 4 R IV 63 - 24 × 200 90 LC 4 R IV 63 - 24 × 200 90 LC 4 R IV 63 - 24 × 200 90 LC 4 R IV 64 - 24 × 200 90 LC 4 R IV 63 - 24 × 200 90 LC 4 R IV 80 - 28 × 250 100 LA 4 R IV 63 - 24 × 200 90 LC 4 R IV 80 - 28 × 250 100 LA 4 R IV 81 - 28 × 250 100 LA 4 R IV 80 - 28 × 250 100 LA 4 R IV 81 - 24 × 200 90 LC 4 R IV 80 - 28 × 250 100 LA 4 R IV 81 - 28 × 250 100 LA 4 R IV 81 - 28 × 250 100 LA 4 R IV 81 - 28 × 250 100 LA 4 R IV 81 - 28 × 250 100 LA 4 R IV 81 - 28 × 250 100 LA 4 R IV 81 - 28 × 250 100 LA 4 R IV 81 - 28 × 250 100 LA 4	25 40 32 32 32 32 32 32 32 32 32 32 25 25 25 25 25 25 25 25 25	2.21 5.53 5.56 5.56 5.63 5.63 2.49 6.8 2.49 7.2 2.49 7.2 7 7	7 1.95 52 7 2.02 53 8 2.09 53 2.06 43 2.06 43 2.12 44 1 2.18 44 2 2.18 36 3 2.04 35 3 2.04 35 3 2.13 36 3 2.14 37 2 2.06 28 2 2.1 27	2 0,71 9 1,12 11 2,12 16 0,85 16 0,71 11 0,85 12 1,95 12 1,95 12 1,32 12 1,6 11 2,12 19 0,75 8 0,67 8 0,67 8 0,67 12 1,32 1,32 1,32 1,32 1,32 1,32 1,32 1,32	MR IV 161 - 28 × 250 112 MC 6 252 MR IV 200 - 28 × 250 112 MC 6 252 MR IV 250 - 38 × 300 132 S 6 239 MR IV 161 - 28 × 250 112 MC 6 200 MR IV 161 - 28 × 250 112 MC 6 200 MR IV 200 - 28 × 250 112 MC 6 200 MR IV 250 - 38 × 300 132 S 6 190 MR IV 160 - 28 × 250 112 MC 6 200 MR IV 160 - 28 × 250 112 MA 4 252 MR IV 160 - 28 × 250 112 MA 4 252 MR IV 160 - 28 × 250 112 MC 6 160 MR IV 200 - 28 × 250 112 MC 6 160 MR IV 200 - 28 × 250 112 MC 6 160 MR IV 200 - 28 × 250 112 MC 6 160 MR IV 200 - 28 × 250 112 MC 6 160 MR IV 200 - 28 × 250 112 MC 6 160 MR IV 125 - 28 × 250 112 MC 6 160 MR IV 125 - 28 × 250 112 MC 6 160 MR IV 126 - 28 × 250 112 MC 6 160 MR IV 126 - 28 × 250 112 MC 6 125 MR IV 160 - 28 × 250 112 MC 6 125 MR IV 160 - 28 × 250 112 MC 6 125 MR IV 160 - 28 × 250 112 MC 6 125 MR IV 160 - 28 × 250 112 MC 6 125 MR IV 160 - 28 × 250 112 MA 4 200 MR IV 161 - 28 × 250 112 MA 4 200 MR IV 161 - 28 × 250 112 MA 4 200	

Les valeurs en rouge indiquent la puissance thermique nominale Pt_N (température ambiante 40° C, service continu, voir chap. 3.2).

Moteur (cat. TX) avec rendement pas concorme à la classe IE3 (IEC 60034-30).

Puissance nominale et données de plaque se réfèrent au service intermittent S3 70%.

1) Puissance pour service continu S1; pour services S2... S10 il est possible de les **augmenter** (chap. 2b): P₂, M₂ augmentent et fs diminue de façon proportionnelle.

2) Pour la désignation complète dans la commande, voir chap. 3.1.

* Position de montage **B5R**; disponible même pour la position de montage **B5** (voir le tableau du chap. 2b).

P ₁ kW	//2 min ⁻¹	P ₂ kW	M₂ daN m	fs	Riduttore - Motore Gear reducer - Motor 2)	j	P ₁ kW	// 2 min ⁻¹	P ₂ kW	M₂ daN m	fs	Riduttore - Motore Gear reducer - Motor 2)	i
2,44 2,3	7,09 7,8,5 8,5 8,75 8,75 8,75 8,75 8,75 8,75	2,18 2,33 2,33 2,24 2,24 2,24	152 151 154 146 146 146 146 150 150 150 150 123 122 128 128 120 120 120 134 134 134 133 123 123	2,24 0,85 1 0,71 0,85 0,95 1,6 1,8 2,8 2,12 0,67 0,75 1,06 1,32 0,85 1 0,85 1 0,85 1 0,85 1 0,85 1 0,85 1 0,85 1 0,85 1 0,85 1 0,85 1 0,85 1 0,85 1 0,85 1 0,85 1 0,85 1 1 0,85 1 1 1,12 1 1,13 2 1,13 1 1 1 1	MR 2IV 125 - 28 × 250	127 200 165 165 156 156 101 101 160 160 160 125 81,1 127 102 64 101 101 63 63 63 63 63 63 63 63 63 63 63 63 63	2,1 2,35 1,67	43.8 43.8 43.8 43.8 43.8 43.8 56 56 70 70 69.2 70 87.5 87.5 87.5 87.5 87.5 108 108 140 140 140 140 140 140 140 140 140 140	2,4 2,52 2,38 2,255 2,255 2,255 2,255 2,256 2,256 2,256 2,256 2,256 2,256 2,256 2,256 2,256 2,256 2,256 2,256 2,256 2,256 2,26	63 69 65 64 41 66 55 55 22 56 53 4 41.64 43 45 55 55 25 56 53 4 41.64 43 45 55 55 22 88.44 65 28 28.44 65 28 28.44 65 28 28.44 65 28 28.44 65 28 28.44 65 28 28.44 65 28 28.44 65 28 28.44 65 28 28.44 65 28 28.44 65 28 28.44 65 28 28.44 65 28 28.44 65 28 28 28 28 28 28 28 28 28 28 28 28 28	2,36 1,9 0,85 1,0,95 1,7 1,5 2,6 1,06 1,25 1,4 2 0,67 1,08 1,25 1,6 2,0,85 1,18 2,24 1,25 1,4 2,15 1,4 2,24 2,24 1,25 1,25 1,25 1,25 1,25 1,25 1,25 1,25	MR	40 225 40 40 40 40 40 40 40 40 40 40
1,49 1,49 1,66	22,5 22,5 28 28	2,32 2,32 2,32 2,32 2,38 2,31 2,35 2,35 2,35 2,35 2,35 2,4 2,4	99 99 79 78 81 79 80 80 87 80 82 82 67	1,5 1,8 0,67 0,8 0,71 1,25 0,9 1,18 1,18 1,9 1,5	MR	40 40 50 50 32 50 50 32 32 32 50,7 50 32 32 32 40	2,77	4.74 5,56 5,56 5,92 7 7 7	2,72 2,81 2,98 2,85 2,85 2,93 2,86 2,95 2,95 3,02 3,11	709 587 468 483 481 389 400 321 322 322 330 273 248	2,24 0,71 1,18 3 0,85 1	MR IV 250 - 38 × 300 132 M 6 119 MR IV 161 - 28 × 250 112 M 4 22 MR IV 250 - 38 × 300 132 M 6 119 MR IV 250 - 38 × 300 132 M 6 119 MR IV 161 - 28 × 250 112 M 4 22 MR IV 260 - 28 × 250 112 M 4 22 MR IV 166 - 28 × 250 112 M 4 119 MR IV 160 - 28 × 250 112 M 4 119 MR IV 161 - 28 × 250 112 M 4 119 MR IV 161 - 28 × 250 112 M 4 119 MR IV 161 - 28 × 250 112 M 4 119 MR IV 161 - 28 × 250 112 M 4 119 MR IV 200 - 28 × 250 112 M 4 119 MR IV 200 - 28 × 250 112 M 4 119 MR IV 200 - 28 × 250 112 M 4 119 MR IV 200 - 28 × 250 112 M 4 119 MR IV 200 - 28 × 250 112 M 4 119 MR IV 200 - 28 × 250 112 M 4 119 MR IV 126 - 28 × 250 119 M 4 119 MR IV 126 - 28 × 250 119 M 4 119 MR IV 126 - 28 × 250 119 M 4 119 M 126 MR IV 126 M	239 190 252 252 200 200 200 165 160 160 129

Les valeurs en rouge indiquent la puissance thermique nominale $\frac{Pt_N}{t}$ (température ambiante 40°C, service continu, voir chap. 3.2).

Moteur (cat. TX) avec rendement pas concorme à la classe IE3 (IEC 60034-30).

Puissance nominale et données de plaque se réfèrent au service internitent S3 70%.

1) Puissance pour service continu S1; pour services S2... S10 il est possible de les **augmenter** (chap. 2b): P₂, M₂ augmentent et fs diminue de façon proportionnelle.

2) Pour la désignation complète dans la commande, voir chap. 3.1.

* Position de montage **B5R**; disponible même pour la position de montage **B5** (voir le tableau du chap. 2b).

P_1 n_2 P_2 M_2 kW daN m	S Riduttore - Motore Gear reducer - Motor	/		Riduttore - Motore Gear reducer - Motor	i
11 3,01 261 11 3,08 267 13,6 3,17 223 13,8 2,97 206 13,9 3,03 209 14,3 2,91 195 13,8 3,1 215 13,8 3,1 215 13,8 3,1 215 14,3 2,99 200 14,3 2,99 200 14,3 3,07 205 17,3 3,09 171	4 MR IV 160 - 28 × 250 112 M 4 6 MR IV 161 - 28 × 250 112 M 4 5 MR IV 200 - 28 × 250 112 M 4 8 MR IV 126 - 28 × 250 112 M 4 8 MR IV 125 - 28 × 250 112 M 4 95 MR IV 126 - 38 × 300 132 M 6 6 MR IV 126 - 38 × 300 132 M 6 6 MR IV 160 - 28 × 250 112 M 4 18 MR IV 160 - 28 × 250 112 M 4 18 MR IV 161 - 38 × 300 132 M 6 18 MR IV 161 - 38 × 300 132 M 6 19 MR IV 161 - 38 × 300 132 M 6 10 MR IV 161 - 38 × 300 132 M 6 11 MR IV 161 - 38 × 300 132 M 6 12 MR IV 161 - 38 × 300 132 M 6 13 MR IV 161 - 38 × 300 132 M 6 14 MR IV 161 - 38 × 300 132 M 6 15 MR IV 161 - 38 × 300 132 M 6 16 MR IV 165 - 28 × 250 112 M 4 17 MR IV 161 - 38 × 300 132 M 6 18 MR IV 165 - 38 × 300 132 M 6 19 MR IV 125 - 28 × 250 112 M 4	127 127 2,82 103 3,29 101 3,04 65 63 102 102 63 63 63 63 81,1	70 3,5 47,7 2,5 1 87,5 3,47 37,8 1,18 87,5 3,5 38,2 1,9 1 108 3,51 31,1 1,12 1 108 3,51 31,1 1,32 1 108 3,54 31,4 2,24 1 140 3,58 24,4 1,7 1 140 3,61 24,6 2,65 1 200 3,64 17,4 1,7	MR	13 20 16 16 16 13 13 13 10 10 10
17.3 3.09 171 18 3.03 161 18 3.03 161 18 3.03 161 176 3.31 179 17.6 3.31 165 18 3.1 165 18 3.1 165 18 3.1 165 18 3.1 165 18 3.1 165 18 3.1 165 18 3.1 165 18 3.1 165 18 3.1 165 18 3.1 165 18 3.1 165 18 3.1 165 18 3.1 165 18 3.1 134 18 18 18 18 18 18 18 1	25 MR V 126 - 28 × 250 112 M 4 MR V 125 - 38 × 300 132 M 6 MR V 160 - 28 × 250 112 M 4 12 MR IV 161 - 28 × 250 112 M 4 16 MR V 160 - 38 × 300 132 M 6 17 MR IV 160 - 38 × 300 132 M 6 18 MR IV 160 - 38 × 300 132 M 6 19 MR IV 161 - 38 × 300 132 M 6 19 MR IV 100 - 28 × 250 112 M 4 11 MR IV 125 - 28 × 250 112 M 4 12 MR IV 126 - 28 × 250 112 M 4 13 MR IV 126 - 38 × 300 132 M 6 14 MR IV 126 - 38 × 300 132 M 6 15 MR IV 126 - 38 × 300 132 M 6 16 MR IV 126 - 38 × 250 112 M 4 17 MR IV 126 - 38 × 300 132 M 6 18 MR IV 126 - 38 × 300 132 M 6 19 MR IV 126 - 38 × 300 132 M 6 19 MR IV 126 - 38 × 350 112 M 4 10 MR IV 126 - 38 × 350 112 M 4 11 MR IV 161 - 28 × 250 112 M 4 12 MR IV 160 - 28 × 250 112 M 4 13 MR IV 161 - 28 × 250 112 M 4 14 MR IV 161 - 28 × 250 112 M 4 15 MR IV 161 - 28 × 250 112 M 4 16 MR IV 161 - 28 × 250 112 M 4 17 MR IV 161 - 28 × 250 112 M 4 18 MR IV 161 - 28 × 250 112 M 4 19 MR IV 161 - 28 × 250 112 M 4 10 MR IV 161 - 28 × 250 112 M 4 11 MR IV 161 - 28 × 250 112 M 4 12 MR IV 161 - 28 × 250 112 M 4 13 MR IV 161 - 28 × 250 112 M 4 14 MR IV 161 - 28 × 250 112 M 4 15 MR IV 161 - 28 × 250 112 M 4 16 MR IV 161 - 28 × 250 112 M 4 17 MR IV 161 - 28 × 250 112 M 4 18 MR IV 161 - 28 × 250 112 M 4 19 MR IV 161 - 28 × 250 112 M 4 10 MR IV 161 - 28 × 250 112 M 4 11 MR IV 161 - 28 × 250 112 M 4 12 MR IV 161 - 28 × 250 112 M 4	50 50 79.3 79.3 50 50 64 63.4 40.6 63 63 63 40 40 40.4 40.5 63.5 63.5 63.5 63.5 63.6 63 63.6 63.7 63.7 63.8	5.56 3.86 664 0.85 5.59 3.86 660 0.85 5.85 4 653 1.6 5.92 4.1 661 2.12 7 3.92 534 0.71 7 4,03 550 1.25 7.04 4,03 547 1.25 7,37 4,16 539 2,24 8,75 4,06 443 0.85 8,75 4,06 443 1 8,7 3,93 431 0,71 8,8 4,06 440 1 8,7 4,05 445 1,18 8,7 4,05 445 1,18 8,7 4,05 445 1,18 8,7 4,05 445 1,18 8,7 4,05 445 1,18 8,8 4,05 445 1,18	MR IV 250 - 38 × 300 132 MB 6 MR IV 200 - 28 × 250 1112 MC 4 MR IV 200 - 38 × 300 132 MB 6 MR IV 250 - 38 × 300 132 S 4 MR IV 250 - 38 × 300 132 MB 6 MR IV 250 - 38 × 300 132 MB 6 MR IV 161 - 28 × 250 1112 MC 4 MR IV 200 - 28 × 250 112 MC 6 MR IV 200 - 38 × 300 132 MB 6 MR IV 160 - 28 × 250 112 MC 6 MR IV 160 - 28 × 250 112 MC 6 MR IV 161 - 38 × 300 132 MB 6 MR IV 161 - 38 × 300 132 MB 6 MR IV 161 - 38 × 300 132 S 4 MR IV 161 - 38 × 300 132 MB 6 MR IV 161 - 38 × 300 132 MB 6 MR IV 161 - 38 × 300 132 MB 6 MR IV 161 - 38 × 300 132 MB 6 MR IV 200 - 28 × 250 112 MC 4 MR IV 200 - 28 × 250 112 MC 4 MR IV 200 - 38 × 300 132 MB 6	239 190 252 161 239 152 200 128 200 128 190 160 161 102 161
22.5 3,18 135 28 3,18 108 28 3,08 105 28,1 3,13 106 27,6 3,35 116 28 3,14 107 28,1 3,2 109 27,6 3,42 118 27,6 3,42 118 27,6 3,42 118 27,6 3,42 118 27,6 3,42 118 28 3,2 109 28 3,2 109 35 3,35 92 35 3,17 86	12	40 50 50 32 50,7 50,7 50 32 32 32 32 50,8 3,6 50 3,6 50 40 40	11	MR IV 160 - 28 × 250	152 127 127 128 128 81,8 128 81,8 127 101 65 65 102 102 102
34,5 3,41 94 34,5 3,41 94 35 3.2 87 35 3.2 87 36 3,38 90 36 3,38 90 35 3,28 89 35 3,28 89 35 3,28 89 34 34,8 3,4 74 43,8 3,29 72 43,8 3,29 72 43,8 3,29 72 43,8 3,29 72 43,8 3,29 72 43,8 3,29 72 43,8 3,29 72 43,8 3,29 72 43,8 3,29 72 43,8 3,29 72 43,8 3,29 72 43,8 3,29 72 43,8 3,29 72 43,8 3,29 72 43,8 3,29 72 56 3,45 56 56 3,26 56 56 3,32 57 56 3,45 59 3	7. MR	40,6 40,6 40 40 25 25 4,17 40 4,36 40 32 32 32 32 32 32 32 25 25 25 25 25	13,7 4,32 301 2,12 14,3 4,22 282 1,7 17,3 4,25 235 0,75 17,3 4,25 235 0,9 1	MR	63 63 102 63 81,1 81,2 81,2 50 79,3 79,3 81,8 50 50 81,8 50 63,4 63,4 65

Les valeurs en rouge indiquent la puissance thermique nominale Pt_N (température ambiante 40° C, service continu, voir chap. 3.2).

Moteur (cat. TX) avec rendement pas concorme à la classe IE3 (IEC 60034-30).

Puissance nominale et données de plaque se réfèrent au service intermittent S3 70%.

1) Puissance pour service continu S1; pour services S2... S10 il est possible de les **augmenter** (chap. 2b): P₂, M₂ augmentent et fs diminue de façon proportionnelle.

2) Pour la désignation complète dans la commande, voir chap. 3.1.

P ₁ kW	//2 min ⁻¹	P ₂	M₂ daN m	fs	Riduttore - Motore Gear reducer - Motor	Í	P ₁ kW	//2 min ⁻¹	P ₂	M₂ daN m	fs	Riduttore - Motore Gear reducer - Motor	j
5,5 3,5	22,2 22,5 22,5 22,1 22,1 22,1 21,9 22 22,2 22,2 22,2 2	4,17 4,26 4,62 4,62 4,61 4,61 4,65 4,28 4,28 4,28 4,38 4,36 4,61 4,61 4,61 4,61 4,64 4,64 4,64 4,6	179 181 200 200 201 201 202 202 184 184 184 186 188 149 159 159 160 160 147	0,95 1,7 2 1,5 1,8 1,12 1,12 1,12 1,13 1,15 1,16 1,16 1,25 0,95 1,12 1,12 1,32 0,71 1,12 1,12 1,12 0,71 1,12 1,12 0,71 1,12 0,75 1,12 1,12 0,75 1,75 1,75 1,75 1,75 1,75 1,75 1,75 1	MR V 126 - 38 × 300 132 S 4 MR V 125 - 38 × 300 132 MB 6 MR V 126 - 38 × 300 132 MB 6 MR V 126 - 38 × 300 132 MB 6 MR V 160 - 28 × 250 112 MC 4 MR IV 160 - 38 × 300 132 S 4 MR IV 161 - 38 × 300 132 MB 6 MR IV 161 - 38 × 300 132 MB 6 MR IV 161 - 38 × 300 132 MB 6 MR IV 161 - 38 × 300 132 MB 6 MR IV 161 - 38 × 300 132 MB 6 MR IV 161 - 38 × 300 132 S 4 MR IV 161 - 38 × 300 132 S 4 MR IV 161 - 38 × 300 132 S 4 MR IV 161 - 38 × 300 132 S 4 MR IV 161 - 38 × 300 132 S 4 MR IV 161 - 38 × 300 132 S 4 MR IV 161 - 38 × 300 132 S 4 MR IV 125 - 28 × 250 112 MC 4 MR IV 125 - 38 × 300 132 S 4 MR IV 126 - 38 × 300 132 S 4 MR IV 126 - 38 × 300 132 S 4 MR IV 126 - 38 × 300 132 S 4 MR IV 126 - 38 × 300 132 S 4 MR IV 125 - 38 × 300 132 S 4 MR IV 125 - 38 × 300 132 S 4 MR IV 126 - 38 × 300 132 S 4 MR IV 126 - 38 × 300 132 MB 6 MR IV 125 - 38 × 300 132 MB	63 63 40 40 63,5 63,5 63,9 40,9 40,9 63 63 63 63 63 63 50 50,7 50,8 50,8 50,8 50,8 50,8 50,8 50,8 50,9 50,7 50,8	3,55	70 70 69,2 70 70 87,5 87,5 87,5 108 108 108 140 140	4,93 4,96 4,96	82 82 64 65 66 66 66 66 65 52 53 43,2 43,2 43,8 33,8 33,8	1,7 2 2,8 3,35 0,67 1,12 1,25 1,8 1,8 2,12 0,85 1,4 1,4 2,24 1,6 1,6 2,65 1,18 1,9 1,9	MR	25 16 16 25 25 20 20 20 20 20 20 13 20 20 20 20 16 16 16 16 13 13 13 13 10 10 10 10 10 10 10 10 10 10 10 10 10
4,45 4,12	28 28 28.1 27.6 27.4 28 28 28.1 35 36 34.5 34.5 34.5 35 36 34.2 35 36 34.2 35 35 35 36 34.2 35 35 35 35 36 34.2 35 35 35 35 36 34.2 35 35 35 35 36 34.2 35 35 35 35 35 35 35 35 35 35 35 35 35	4,31 4,31 4,4 4,4 4,7 4,68 4,4 4,4 4,4 4,4 4,4 4,4 4,69 4,67 4,67 4,75 4,51 4,51 4,52 4,52 4,52 4,52 4,52 4,52 4,52 4,52	147 147 149 163 163 150 150 150 150 150 129 129 120 120 123 123 123 123 123 123	0,95 0,95 1,06 1,25 1,9 2,24 1,5 1,5 1,5 1,15 1,16 1,25 1,06 1,25 1,16 1,25 1,16 1,25 1,16 1,25 1,16 1,25 1,16 1,25 1,16 1,25 1,16 1,25 1,16 1,25 1,16 1,25 1,16 1,25 1,16 1,25 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,1	MR V 126 - 28 × 250 112 MC 4 MR V 125 - 38 × 300 132 S 4 MR V 125 - 38 × 300 132 MB 6 MR V 126 - 38 × 300 132 MB 6 MR V 126 - 38 × 300 132 MB 6 MR V 160 - 28 × 250 112 MC 4 MR V 160 - 28 × 250 112 MC 4 MR V 161 - 38 × 300 132 S 4 MR V 161 - 38 × 300 132 S 4 MR V 161 - 38 × 300 132 S 4 MR V 161 - 38 × 300 132 S 4 MR V 161 - 38 × 300 132 S 4 MR V 160 - 38 × 300 132 S 4 MR V 161 - 38 × 300 132 S 4 MR V 160 - 38 × 300 132 S 4 MR V 160 - 38 × 300 132 S 4 MR V 160 - 38 × 300 132 S 4 MR V 160 - 38 × 300 132 S 4 MR V 100 - 28 × 250 112 MC 4 MR V 100 - 28 × 250 112 MC 4 MR V 100 - 38 × 300 132 S 4 MR V 125 - 28 × 250 112 MC 4 MR V 126 - 38 × 300 132 S 4 MR V 125 - 38 × 300 132 S 4 MR V 126 - 38 × 300 132 S 4 MR V 160 - 38 × 300 132 S 4 MR V 160 - 38 × 300 132 S 4 MR V 160 - 38 × 300 132 S 4 MR V 126 - 38 × 300 132 S 4 MR V 126 - 38 × 300 132 S 4 MR V 126 - 38 × 300 132 S 4 MR V 126 - 38 × 300 132 S 4 MR V 126 - 38 × 300 132 S 4 MR V 126 - 38 × 300 132 S 4 MR V 126 - 38 × 300 132 S 4 MR V 126 - 38 × 300 132 S 4 MR V 126 - 38 × 300 132 S 4 MR V 126 - 38 × 300 132 S 4 MR V 126 - 38 × 300 132 S 4 MR V 126 - 38 × 300 132 S 4 MR V 126 - 38 × 300 132 S 4 MR V 126 - 38 × 300 132 S 4 MR V 126 - 38 × 300 132 S 4 MR V 126 - 38 × 300 132 S 4 MR V 126 - 38 × 300 132 S 4 MR V 160 - 38 × 300 132 S 4 MR V 160 - 38 × 300 132 S 4 MR V 160 - 38 × 300 132 S 4 MR V 160 - 38 × 300 132 S 4 MR V 160 - 38 × 300 132 S 4 MR V 160 - 38 × 300 132 S 4 MR V 160 - 38 × 300 132 S 4	50 50 50 50 50 50 32 32 50,8 51,1 50 50 50 50 50 40,6 40,6 40,6 40,6 40,9 40,9 40 40,9 40 40 40 40 40 40 40 40 40 40	7.5 6,3 6,3 4,44 5,4 4,81 5,14 6 6	8,7 8,8 9,21 11 11,3 11,3 11,1 11,3 11,3 11,3 11,	5,7,9,9,8,8,6,6,6,9,8,8,8,8,8,9,9,8,8,8,8,8	23,9 1100 1132 935 745 735 768 600 607 6615 603 487 496 493 479 501 385 341 331 331 331 331 331 331 331 331 331	0.85 1,18 1 1,18 1,16 1,4 0.9 0,9 1,7 1,7 0,75 0,9 1,12 1,12 2,12 0,75 0,9 1,12 1,12 2,12 0,75 0,9 1,12 1,12 2,12 0,75 0,9 1,12 1,12 1,12 1,12 1,12 1,12 1,12 1,	MR	7 239 190 200 239 152 159 128 128 190 127 102 161 102 152 128 81,8 80 128 81,8 127 102 163 63 63 102 63 63 63 102 63 63 63 102 63 63 63 102 63 63 63 63 63 63 63 63 63 63 63 63 63
	56 56 56 56 56	4,56 4,56 4,75 4,75 4,75	78 81 81	1,06	MR V 100 - 38 × 300 132 S 4 MR V 125 - 28 × 250 112 MC 4 MR V 126 - 28 × 250 112 MC 4	25 25 25 25 25 25	5,06	18 21,5 22,2 22,5	6,1 5,9 6,2	322 261 267		MR V 250 - 42 × 350 160 M 6 MR IV 126 - 38 × 300 132 M 4 MR IV 126 - 38 × 300 132 MC 6	50 65 40,6 40

Les valeurs en rouge indiquent la puissance thermique nominale $\frac{Pt_N}{t}$ (température ambiante 40°C, service continu, voir chap. 3.2).

Moteur (cat. TX) avec rendement pas concorme à la classe IE3 (IEC 60034-30).

Puissance nominale et données de plaque se réfèrent au service internitent S3 70%.

1) Puissance pour service continu S1; pour services S2... S10 il est possible de les **augmenter** (chap. 2b): P₂, M₂ augmentent et fs diminue de façon proportionnelle.

2) Pour la désignation complète dans la commande, voir chap. 3.1.

* Position de montage **B5R**; disponible même pour la position de montage **B5** (voir le tableau du chap. 2b).

kW mi	7 ₂	M ₂	fs		Riduttore - Motore Gear reducer - Motor	j	P ₁	M ₂	P ₂	M₂ daN m	fs		Riduttore - Motore Gear reducer - Motor	i
7,5 22 21	2,1 6,3 1,9 6,3	273 274	1,18 1,12		IV 160 - 28 × 250 132 M * 4 IV 160 - 38 × 300 132 M 4	63,5 63,9	7,5	140 140	6,8 6,8	46,1 46,4	1,4 2,24		V 100 - 38 × 300 132 M 4 V 125 - 38 × 300 132 M 4	10 10
22 21	2,1 6,3 ,9 6,3	273 274	1,5 1,32	MR MR	IV 161 - 28 × 250 132 M * 4 IV 161 - 38 × 300 132 M 4	63,5 63,9	9,2	5,85	6,7	1093		MR	IV 250 - 38 × 300 132 MB 4	239
2 2 22	2 6.3	275 275 251	1,32 1,5 0,85	MR	IV 160 - 38 × 300 132 MC 6 IV 161 - 38 × 300 132 MC 6 V 160 - 38 × 300 132 M 4	40,9 40,9 63	7,6	7,37 8,7	7 6,8	901 745	1,4 0,71	MR MR	IV 250 - 38 × 300 132 MB 4 IV 200 - 38 × 300 132 MB 4	190 161
22 22	2,2 5,8 2.5 6	251 253	1 1,12	MR MR	V 161 - 38 × 300 132 M 4 V 160 - 38 × 300 132 MC 6	63 40		9,21	7,1	740 614	1	MR MR	IV 250 - 38 × 300 132 MB 4 IV 200 - 38 × 300 132 MB 4	152 128
22 22 22	2.5 6	253 253 253	1,32 1,12 1,32	MR	V 161 - 38 × 300 132 MC 6 V 160 - 42 × 350 160 M 6 V 161 - 42 × 350 160 M 6	40 40 40	6	11 13,7 13,7	7,3 7,1 7,1	629 493 493		MR MR	IV 250 - 38 × 300 132 MB 4 IV 160 - 38 × 300 132 MB 4 IV 161 - 38 × 300 132 MB 4	127 102 102
21 22	1 .9 6,4	278 256	2,24 1,6	MR MR	IV 200 - 38 × 300 132 M 4 V 200 - 38 × 300 132 M 4	63,9 63	O	13,7 13,8	7,2 7,7	503 532		MR	IV 200 - 38 × 300 132 MB 4 IV 250 - 38 × 300 132 MB 4	102 102
5,8 27	2,5 6,1	258 258 217	2,12 2,12 0,75	MR	V 200 - 38 × 300 132 MC 6 V 200 - 42 × 350 160 M 6 IV 125 - 28 × 250 132 M * 4	40 40 50,7	6,6 6,6	17,1	7,3 7,3	406 406	1	MR MR	IV 160 - 38 × 300 132 MB 4 IV 161 - 38 × 300 132 MB 4	81,8 81,8
5,8 27 5,8 27	7,6 6,3 7.6 6,3	217 217	0,71 0,9	MR MR	IV 125 - 38 × 300 132 M 4 IV 126 - 28 × 250 132 M * 4	50,7 50,8 50,7		17.1 17.6 21,9	7,4 7,9	415 426 336	2,8	MR MR MR	IV 200 - 38 × 300 132 MB 4 IV 250 - 38 × 300 132 MB 4 IV 160 - 38 × 300 132 MB 4	81,8 79,3 63,9
5,55 27 27 2	7.7 6.3	217 218 201	0,8 0,95 0,71	MR	IV 126 - 38 × 300 132 M 4 IV 126 - 38 × 300 132 MC 6 V 126 - 38 × 300 132 M 4	50,8 32,5 50		21,9 22,2	7,7 7,7 7,2 7,2	336 308	1,06 0,67	MR MR	IV 161 - 38 × 300 132 MB 4 V 160 - 38 × 300 132 MB 4	63,9 63
5,8 28 5,8 28	3,1 6 3,1 6	204 204	0,75 0,9	MR MR	V 125 - 38 × 300 132 MC 6 V 126 - 38 × 300 132 MC 6	32 32		22,2 21,9 22,2	7,2 7,8 7,3	308 341 314	0,8 1,8 1,32	MR	V 161 - 38 × 300 132 MB 4 IV 200 - 38 × 300 132 MB 4 V 200 - 38 × 300 132 MB 4	63 63,9 63
27 27 2	',4 6,4	222 222 205	1,4 1,7 1,12	MR MR MR	IV 160 - 38 × 300 132 M 4 IV 161 - 38 × 300 132 M 4 V 160 - 38 × 300 132 M 4	51,1 51,1 50	6,4		7,7 7,8	266 273	0,67 1,12	MR	IV 126 - 38 × 300 132 MB 4 IV 160 - 38 × 300 132 MB 4	50,8 51,1
28	8 6 3.1 6.1	205 207	1,32 1,4	MR MR	V 161 - 38 × 300 132 M 4 V 160 - 38 × 300 132 MC 6	50 32		27.4 28 28	7,8 7,4 7,4	273 251 251		MR MR	V 161 - 38 × 300 132 MB 4 V 160 - 38 × 300 132 MB 4 V 161 - 38 × 300 132 MB 4	51,1 50 50
28 28 28	3,1 6,1 3,1 6,1	207 207 207	1,6 1,4 1,6	MR MR MR	V 161 - 38 × 300 132 MC 6 V 160 - 42 × 350 160 M 6 V 161 - 42 × 350 160 M 6	32 32 32		27.4 28	7,4 7,9 7,5	277 256	2,24 1,7	MR	IV 200 - 38 × 300 132 MB 4 V 200 - 38 × 300 132 MB 4	51,1 50
27 2	7,4 6,5 8 6,1	226 209	2,8 2,12	MR MR	IV 200 - 38 × 300 132 M 4 V 200 - 38 × 300 132 M 4	51,1 50	6,9 <u>6,</u> 9	34.5	7,8 7,8	216 216	0,71 0,85	MR	IV 125 - 38 × 300 132 MB 4 IV 126 - 38 × 300 132 MB 4	40,6 40,6
34 34 34	I.5 6.4	177 176 176	0,95 0,9 1,06	MR	IV 125 - 28 × 250 132 M * 4 IV 125 - 38 × 300 132 M 4 IV 126 - 38 × 300 132 M 4	40,6 40,6 40,6	7,	35 34,2 34,2	7,4 7,9 7,9 7,5	201 222 222	0,75 1,4 1,7	MR	V 126 - 38 × 300 132 MB 4 IV 160 - 38 × 300 132 MB 4 IV 161 - 38 × 300 132 MB 4	40 40,9 40,9
3 3	5 6 5 6	164 164	0,75 0,9	MR MR	V 125 - 38 × 300 132 M 4 V 126 - 38 × 300 132 M 4	40 40		35 35	7,5	206 206	1,18 1,4	MR MR	V 160 - 38 × 300 132 MB 4 V 161 - 38 × 300 132 MB 4	40 40
3 3 34	6,3	168 168 181	0,85 1 1,7	MR MR MR	V 125 - 38 × 300 132 MC 6 V 126 - 38 × 300 132 MC 6 IV 160 - 38 × 300 132 M 4	25 25 40,9	7 !	34,2 35 43,1	8,1 7,6 7,9	226 209 176	2,65 2,12 0,85	MR	V 200 - 38 × 300 132 MB 4 V 200 - 38 × 300 132 MB 4 V 125 - 38 × 300 132 MB 4	40,9 40 32,5
34	1,2 6,5 5 6,1	181 168	2 1,4	MR MR	IV 161 - 38 × 300 132 M 4 V 160 - 38 × 300 132 M 4	40,9 40	7,5 7,5	43.1 43.8	7,9 7,6	176 165	1 0,8	MR MR	IV 126 - 38 × 300 132 MB 4 V 125 - 38 × 300 132 MB 4	32,5 32
3 3	5 6,1 5 6,2 3,1 6,5	168 170 143	1,7 2,65 1,06	MR	V 161 - 38 × 300 132 M 4 V 200 - 38 × 300 132 M 4 IV 125 - 38 × 300 132 M 4	40 40 32,5		43,8 43,8 43,8	7,6 7,7 7,7	165 168 168	0,95 1,4 1,7	MR	V 126 - 38 × 300 132 MB 4 V 160 - 38 × 300 132 MB 4 V 161 - 38 × 300 132 MB 4	32 32 32
43 43	3.1 6,5 3.8 6.2	143 135	1,25 1	MR MR	IV 126 - 38 × 300 132 M 4 V 125 - 38 × 300 132 M 4	32,5 32		43,8	7,8	170 135	2,8		V 200 - 38 × 300 132 MB 4 V 125 - 38 × 300 132 MB 4	32 25
43 4 43		135 136 137	1,18 1,25 1,8	MR	V 126 - 38 × 300 132 M 4 V 126 - 38 × 300 132 M 6 V 160 - 38 × 300 132 M 4	32 20 32		56 56 56 56	7,9 7,9 8 8	135 137 137	1,06 1,7		V 126 - 38 × 300 132 MB 4 V 160 - 38 × 300 132 MB 4 V 161 - 38 × 300 132 MB 4	25 25 25
43	3,8 6,3 6 6,2	137 106	2,12 0,8	MR	V 161 - 38 × 300 132 M 4 V 100 - 38 × 300 132 M 4	32 25	7,2		8	109 110	0,67 1,12	MR	V 100 - 38 × 300 132 MB 4 V 125 - 38 × 300 132 MB 4	20 20
5	6 6,5 6 6,5	110	1,12 1,32	MR MR	V 125 - 38 × 300 132 M 4 V 126 - 38 × 300 132 M 4	25 25		70 70	8 8,1	110 111	1,32	MR MR	V 126 - 38 × 300 132 MB 4 V 160 - 38 × 300 132 MB 4	20 20
56 56 5	6 ,5	111 111 112	1,25 1,5 2	MR MR	V 125 - 38 × 300 132 MC 6 V 126 - 38 × 300 132 MC 6 V 160 - 38 × 300 132 M 4	16 16 25	7,8		8,1	111 88	2,36	MR	V 161 - 38 × 300 132 MB 4 V 100 - 38 × 300 132 MB 4	20 16
5	6 6,5 6 6,5	112 89	2,36 0,8	MR MR	V 161 - 38 × 300 132 M 4 V 100 - 38 × 300 132 M 4	25 20		87,5 87,5 87,5	8,1 8,1 8,2	89 89 89		MR MR MR	V 125 - 38 × 300 132 MB 4 V 126 - 38 × 300 132 MB 4 V 160 - 38 × 300 132 MB 4	16 16 16
7 7 69		89 89 92	1,32 1,6 1,5		V 125 - 38 × 300 132 M 4 V 126 - 38 × 300 132 M 4 V 125 - 38 × 300 132 MC 6	20 20 13		87,5 108	8,2	89 72	3 1	MR MR	V 161 - 38 × 300 132 MB 4 V 100 - 38 × 300 132 MB 4	16 13
69	9,2 6,7 0 6,6	92 90	1,8 2,5	MR MR	V 126 - 38 × 300 132 MC 6 V 160 - 38 × 300 132 M 4	13 20		108 108	8,3 8,3	73 73	1,9	MR MR	V 125 - 38 × 300 132 MB 4 V 126 - 38 × 300 132 MB 4	13 13
87 87	7,5 6,6	90 72	3	MR MR	V 161 - 38 × 300 132 M 4 V 100 - 38 × 300 132 M 4	20 16		140 140 140	8,3 8,3 8,3	57 57 57	1,12 1,8 2,12	MR	V 100 - 38 × 300 132 MB 4 V 125 - 38 × 300 132 MB 4 V 126 - 38 × 300 132 MB 4	10 10 10
87 87 10	7.5 6,6	72 72 59	1,6 1,9 1,18		V 125 - 38 × 300 132 M 4 V 126 - 38 × 300 132 M 4 V 100 - 38 × 300 132 M 4	16 16 13	11 8	4,5	7,8	1660	0,67	MR	IV 250 - 42 × 350 160 L 6	200
10	08 6.7	60	1,10		V 125 - 38 × 300 132 M 4	13	9, ² 8,9		8 8,1	1307 1372	0,8 0,95		IV 250 - 38 × 300 132 MC 4 IV 250 - 42 × 350 160 L 6	239 159

Les valeurs en rouge indiquent la puissance thermique nominale Pt_N (température ambiante 40° C, service continu, voir chap. 3.2).

Moteur (cat. TX) avec rendement pas concorme à la classe IE3 (IEC 60034-30).

Puissance nominale et données de plaque se réfèrent au service intermittent S3 70%.

¹⁾ Puissance pour service continu S1; pour services S2 ... S10 il est possible de les **augmenter** (chap. 2b): P_2 , M_2 augmentent et fs diminue de façon proportionnelle. 2) Pour la désignation complète dans la commande, voir chap. 3.1.

* Position de montage **B5R**; disponible même pour la position de montage **B5** (voir le tableau du chap. 2b).

P ₁ kW	//2 min ⁻¹	P ₂	M₂ daN m	fs	Riduttore - Motore Gear reducer - Motor 2)	i	P ₁ kW	//2 min ⁻¹	P ₂ kW	M₂ daN m	fs	Riduttore - Motore Gear reducer - Motor 2)	j
6,9	7,37 7 7,09 8,8 9,21 8,82 8,8	8,3 8,2 8,4 8,3 8,5 8,5 8,5	1077 1117 1127 901 884 919 925	0,9 1,18 0,8 1,4 1,32	MR IV 250 - 42 × 350 160 M 4 MR IV 250 - 42 × 350 160 L 6 MR IV 200 - 42 × 350 160 L 6 MR IV 250 - 38 × 300 132 MC 4 MR IV 250 - 42 × 350 160 M 4 MR IV 250 - 42 × 350 160 L 6	190 200 127 102 152 159 102	11	35 35 35 35 35 34,2 35 35	9,5 9 9 9,7 9,6 9,1	258 246 246 246 246 271 261 249	1,18	MR V 160 - 38 × 300 132 MC 4 MR V 161 - 38 × 300 132 MC 4 MR V 160 - 42 × 350 160 M 4 MR V 161 - 42 × 350 160 M 4 MR IV 200 - 38 × 300 132 MC 4 MR IV 200 - 42 × 350 160 M 4	40 40 40 40 40 40,9 40 40
8,5 8,5	11 11 11 11	8,4 8,4 8,7 8,7	752 752	0,85 1,6 1,6	MR IV 200 - 42 × 350 160 M 4 MR IV 250 - 38 × 300 132 MC 4 MR IV 250 - 42 × 350 160 M 4	128 128 127 127	7,5 8 8	35 43.1 43.8 43.8	9,1 9,5 9	249 210 198 198		MR V 200 - 42 × 350 160 M 4 MR IV 126 - 38 × 300 132 MC 4 MR V 125 - 38 × 300 132 MC 4	40 32,5 32 32
6 5,7 9,3 9,3 9	13,7 14,1 13,7 13,7 14,1 14,3 13,8 13,7 14,1 14,3	8,8 9,3 8,7	580 602 602 594 564 636 616 630 579	0,71 1,06 1,06 1,18 0,85 1,6 1,8 2 1,5	MR IV 161 - 42 × 350	102 64 102 102 64 63 102 102 63,9 63		43.8 43.8 43.8 43.8 43.8 45 45 45 43.8 43.8	9,6 9,2 9,2 9,2 9,5 9,5 9,8 9,3	209 209 201 201 201 201 203 203 214 203	1,4 1,6 1,18 1,5 1,18 1,4 1,32 1,6	WR	32 32 32 32 32 32 20 20 32 32 32
6,6 6,6 7 7 7,5	17,1 17,5 17,5 18 17,1 17,5 18 17,6 17,1	8,7 8,6 8,6 8,5 8,9 8,8 8,7 9,4 9,3 8,9	470 453 496 479 462 509 518	0,8 0,67 0,8 0,71 1,32 1,18	MR IV 161 - 38 × 300	81,8 81,8 80 80 50 81,8 80 50 79,3 81,8 50		56 56 56 56 56 56,3 56,3 56,7	9,5 9,6 9,6 9,6 9,7 9,7 9,7	162 164 164 164 164 164 164 165 131	1,7 1,4 1,7 1,6 1,9 2,65 0,9	MR V 126 - 38 × 300 132 MC 4 MR V 160 - 38 × 300 132 MC 4 MR V 161 - 38 × 300 132 MC 4 MR V 161 - 42 × 350 160 M 4 MR V 160 - 42 × 350 160 L 6 MR V 161 - 42 × 350 160 L 6 MR V 200 - 42 × 350 160 M 4 MR V 125 - 38 × 300 132 MC 4	25 25 25 25 25 25 16 16 25
8,5 8,5 7,7 7,7 8 8 9,3 9,3	21,9 21,9 21,9 21,9 22,5 22,5 22,2 22,2	9,2 9,2 8,8 8,8 9,2	402 402 386 386 392 392 368	0,75 0,9 0,8 0,95 0,85	MR IV 160 - 38 × 300 132 MC 4 MR IV 161 - 38 × 300 132 MC 4 MR IV 160 - 42 × 350 160 M 4 MR IV 161 - 42 × 350 160 L 6 MR IV 161 - 42 × 350 160 L 6 MR IV 161 - 38 × 300 132 MC 4	63,9 63,9 64 64 40 40 63 63		70 70 70 70 70 87,5 87,5 87,5	9,6 9,7 9,7 9,7 9,7 9,7 9,7	131 132 132 132 132 106 106 107	2 1,7 2 1,12 1,32	MR V 160 - 38 × 300 132 MC 4 MR V 161 - 38 × 300 132 MC 4 MR V 160 - 42 × 350 160 M 4 MR V 161 - 42 × 350 160 M 4 MR V 125 - 38 × 300 132 MC 4	20 20 20 20 20 20 16 16
8,3 8,3	22.5 22.5 21.9 21.9 22.2 22.2 22.5 21.9	8,8 8,8 9,4 9 8,7 8,7 8.9	372 372 408 393 375 375 378	0,75 0,9 1,5 1,6	MR V 160 - 42 × 350 160 L 6 MR V 161 - 42 × 350 160 L 6 MR IV 200 - 38 × 300 132 MC 4 MR IV 200 - 42 × 350 160 M 4 MR V 200 - 38 × 300 132 MC 4 MR V 200 - 42 × 350 160 M 4 MR V 200 - 42 × 350 160 L 6	40 40 63,9 64 63 63 40 63,9		87.5 108 108 108 108 140 140	9,8 9,9 9,9 10 10 10	107 88 88 88 88 68 68	1,32 1,6 2,36 2,8 1,5 1,8	WR V 126 - 38 × 300 132 MC 4 WR V 160 - 42 × 350 160 M 4 WR V 161 - 42 × 350 160 M 4 WR V 125 - 38 × 300 132 MC 4 WR V 126 - 38 × 300 132 MC 4	16 13 13 13 13 10 10
9,2 9,2	22,2 27,4 27,4	8,9 9,4 9,4	383 326 326	1,9 0,95 1,12	MR V 250 - 42 × 350 160 M 4 MR IV 160 - 38 × 300 132 MC 4 MR IV 161 - 38 × 300 132 MC 4	63 51,1 51,1	15 10,6	140 140 7 7,04	10 10 11,2 11,3	68 68 1523	2,8 3,15 0,67 0,8	MR V 161 - 42 × 350 160 M 4 MR IV 250 - 42 × 350 160 L 4	10 10 200 128
8,7 8,7	28 28 28,1 28,1 28 28	9,3 9,3 9,4 9,4 8,8 8,8	319 319	1,06 1,06 1,25 0,75	MR IV 161 - 42 × 350 160 M 4 MR IV 160 - 42 × 350 160 L 6 MR IV 161 - 42 × 350 160 L 6 MR V 160 - 38 × 300 132 MC 4	50 50 32 32 50 50			11,6	1253 1025 821	0,95 1,18 0,75 0,85	MR IV 250 - 42 × 350 160 L 4 MR IV 250 - 42 × 350 160 L 4 MR IV 200 - 42 × 350 160 L 4 MR IV 200 - 48 × 350 180 L 6	159 127 102 64
9,1 9,1	28 28,1 28,1 27,4 28 28 28 28,1	8,8 9 9,5 9,5 9,5	300 300 304 304 331 323 306 306 310	0,75 0,9 0,95 1,12 1,9 1,8 1,5 1,5	MR V 160 - 42 × 350 160 M 4 MR V 161 - 42 × 350 160 M 4 MR V 160 - 42 × 350 160 L 6 MR V 161 - 42 × 350 160 L 6 MR IV 200 - 38 × 300 132 MC 4 MR V 200 - 42 × 350 160 M 4 MR V 200 - 42 × 350 160 M 4 MR V 200 - 42 × 350 160 M 4 MR V 200 - 42 × 350 160 L 6	50 50 32 32 51,1 50 50 50 32	10,9 11,7	13,7 14,1 14,3 17,5	12 12,7 11,8 12 11,9 12,7 12,8 12,2 12,1	840 859 789 654 630 707 695	1,32 1,4 1,12	MR IV 250 - 42 × 350 160 L 4 MR IV 250 - 48 × 350 180 L 6 MR V 250 - 48 × 350 180 L 6 MR V 200 - 48 × 350 160 L 4 MR IV 200 - 48 × 350 180 L 6 MR IV 250 - 42 × 350 160 L 4 MR IV 250 - 42 × 350 160 L 4 MR V 250 - 48 × 350 180 L 6 MR V 250 - 48 × 350 180 L 6	102 63,9 63 80 50 81,8 51,1 50
6,9	27,4 28 34,5 34,2 34,2 35	9,6 9,1 9,3 9,5	265 265	3,35 2,5 0,71 1,18	MR V 250 - 42 × 350 160 M 4 MR V 250 - 42 × 350 160 M 4 MR IV 126 - 38 × 300 132 MC 4 MR IV 160 - 38 × 300 132 MC 4 MR IV 161 - 38 × 300 132 MC 4	51,1 50 40,6 40,9 40,9 40	12,2	21.9 22.5 22.2 22.5	12,3	536 544 512 515	1,12 1,25 0,8 1,06	$\begin{array}{llllllllllllllllllllllllllllllllllll$	64 40 63 40 63,9

Les valeurs en rouge indiquent la puissance thermique nominale $\frac{Pt_N}{t}$ (température ambiante 40°C, service continu, voir chap. 3.2).

Moteur (cat. TX) avec rendement pas concorme à la classe IE3 (IEC 60034-30).

Puissance nominale et données de plaque se réfèrent au service intermittent S3 70%.

¹⁾ Puissance pour service continu S1; pour services S2 ... S10 il est possible de les **augmenter** (chap. 2b): P_2 , M_2 augmentent et fs diminue de façon proportionnelle. 2) Pour la désignation complète dans la commande, voir chap. 3.1.

	P ₁ kW		// 2 nin ⁻¹	P ₂ kW	M₂ daN m	fs		Riduttore - Motore Gear reducer - Motor	j	P ₁ kW	M ₂	P ₂	M₂ daN m	fs	Riduttore - Motore / Gear reducer - Motor	
	15	2	22,2 22,5	12,2 12,4	523 525	1,4 1,8		V 250 - 42 × 350 160 L 4 V 250 - 48 × 350 180 L 6	63 40	18,5	22,5		647	1,5		_
		0),3 ,1 2 ,1 2	28 28,1 28,1 28,1 28	12,7 12 12,2 12,2 12,9 12,9 12,5 13,1 12,4	434 410 415 415 440 417 423 456 425	0,75 0,67 0,71 0,8 1,32 1,06 1,32 2,5 1,9	MR MR MR MR MR MR MR	V 161 - 42 × 350 160 L	50 50 32 32 50 50 32 51,1 50	14,5 10,8 10,8 11,4	28 28,1 27,4 28 35 35 35 35 35	15,9 15,1 15,4 16,1 15,4 15,9 15,9 15,2 16,1 15,4	543 515 522 562 524 434 434 413 439 419	0,67	MR V 200 - 48 × 350 180 M 4 50 MR V 200 - 55 × 400 200 LR 6 32 MR IV 250 - 48 × 350 180 M 4 51.1 MR V 250 - 48 × 350 180 M 4 50 MR IV 160 - 48 × 350 180 M 4 40 MR IV 161 - 48 × 350 180 M 4 40 MR V 161 - 48 × 350 180 M 4 40 MR IV 200 - 48 × 350 180 M 4 40 MR IV 200 - 48 × 350 180 M 4 40	
	10 11 11),8 ,4 ,4	35 35 35 35 35 36 34,2 35	12,9 12,3 12,3 13,1 12,5 13 13,4 12,6	352 352 335 335 356 340 345 373 344	1 0,71 0,85 1,6 1,32 1,5 2,8 2,36	MR MR MR MR MR MR	V 160 - 42 × 350	40 40 40 40 40 40 40 25 40,9	11,8 11,8 12,5 12,5	36 34,2 35	16 16,5 15,5 16,1 16,1 15,5 15,5 16,5 15,7	425 460 424 352 352 337 337 359 342	1,25 2,36 1,9 0,8 0,95 0,71 0,85 1,5	MR	
	11 12 12	2,5 4	13,8 13,8	13,1 13,1 12,5 12,5 13,3 12,7 13,2 13,1 12,9	285 274 274 291 277 279 287 221	1 1,18 0,9 1,06 1,9 1,7 1,9 2,5 0,67	MR MR MR MR MR MR	V 160 - 42 × 350	32 32 32 32 32 32 20 32 25		45 43,8 56 56 56 56,3 56 70	16,2 16,2 16,1 16,1 16,3 16,5 16,4 16,3	345 354 275 275 278 281 280 223	1,6 2 0,85 1 1,5 1,8	MR	
	11	5	56 56,3 66,3 56,3 66,3 70	13,1 13,1 13,2 13,2 13,2 13,4 13,1	223 223 224 224 225 228 179	1 1,18 1,18 1,4 1,9 2,12 0,67	MR MR MR MR MR MR	V 160 - 42 × 350 160 L 4 V 161 - 42 × 350 160 L 4 V 160 - 48 × 350 180 L 6 V 161 - 48 × 350 180 L 6 V 200 - 42 × 350 160 L 4 V 200 - 48 × 350 180 L 6 V 125 - 38 × 300 160 L 4	25 25 16 16 25 16		70 70 87.5 87.5 87.5 108 108	16,3 16,5 16,5 16,5 16,7 16,8 16,8	223 224 180 180 183 149 149	1,7	MR V 161 - 48 × 350 180 M 4 20 MR V 200 - 48 × 350 180 M 4 20 MR V 160 - 48 × 350 180 M 4 16 MR V 161 - 48 × 350 180 M 4 16 MR V 200 - 48 × 350 180 M 4 16 MR V 160 - 48 × 350 180 M 4 13 MR V 161 - 48 × 350 180 M 4 13	
		6	70 70 70 39,2 39,2 70	13,1 13,2 13,2 13,4 13,4 13,3 13,3	179 180 180 185 185 182 145	0,8 1,25 1,5 1,4 1,7 2,36 0,8	MR MR MR MR MR	V 126 - 38 × 300 160 L * 4 V 160 - 42 × 350 160 L 4 V 161 - 42 × 350 180 L 6 V 160 - 48 × 350 180 L 6 V 161 - 48 × 350 180 L 6 V 200 - 42 × 350 160 L 4 V 125 - 38 × 300 160 L * 4	20 20 20 13 13 20	22 11 13,6 14,9	108 140 140 8.8 11 13,7	16,8 16,9 16,9 17,1 17,3 17,7	115 115	1,6 1,9 0,67 0,75	MR V 160 - 48 × 350 180 M 4 10 MR V 161 - 48 × 350 180 M 4 10 MR IV 250 - 55 × 400 200 L 6 102 MR IV 250 - 48 × 350 180 L 4 128	_
		2,2 8	37,5 37,5 37,5 37,5 108	13,3 13,4 13,4	145 146 146	0,95 1,5 1,8 2,8 0,95 1,12 1,8	MR MR MR MR MR MR	V 126 - 38 × 300 160 L * 4 V 160 - 42 × 350 160 L 4 V 161 - 42 × 350 160 L 4 V 200 - 42 × 350 160 L 4 V 125 - 38 × 300 160 L * 4 V 126 - 38 × 300 160 L * 4 V 160 - 42 × 350 160 L 4	16 16 16 16 13 13	16,8 18,6 12,2	14.3 17.1 18 18 21,9 22,5	17,3 18,6 18,8 17,8 18 17,8	1158 1036 998 946 786 756	0,75 0,95 1,18 1,06 0,8 0,71	MR	
1	8,5 1	-	108 140 140 140 140 8,8	13,6 13,6 13,7 13,7 14,3	120 93 93 93 93 1556	2,12 1,12 1,32 2 2,36 0,8	MR MR MR MR	V 161 - 42 × 350 160 L 4 V 125 - 38 × 300 160 L 4 V 126 - 38 × 300 160 L 4 V 160 - 42 × 350 160 L 4 V 161 - 42 × 350 160 L 4 V 250 - 55 × 400 200 LR 6	13 10 10 10 10 10	15,7 16,2 14,5	21,9 22,5 22,2 22,5 28 28 28,1	19 19 17,8 18,1 18,9 17,9 18,3	806 767	1,32 1,5 0,95 1,25 0,9 0,71 0,9	MR	
	13 14 10	3,6 1,9 1 1,9 1	11 3,7 4,3 7,5 18	14,5 14,9 14,6 14,8 14,7	1266 1036 974 806 778	0,9 1,06 0,9 0,71 0,71	MR MR MR MR MR	IV 250 - 48 × 350 180 M 4 IV 250 - 48 × 350 180 M 4 V 250 - 55 × 400 200 LR 6 IV 200 - 48 × 350 180 M 4 V 200 - 55 × 400 200 LR 6	128 102 63 80 50	17 17,7 18,3	27,4 28 28,1 35 35	19,2 18,3 19 19,2 18,3 19,1	668 623 644 523 499 506	1,7 1,25 1,32 1,12 0,9 1,06	MR	
	12 12	2,2 2,8 2,8 2,8 2,8	18 18 21.9	15,6 15,8 15 15,1 15,1 16 16	871 839 795 661 636 696 678	1,12 1,4 1,25 0,9 0,85 1,6 1,8	MR MR MR MR MR	V 250 - 48 × 350	81,8 50 50 64 40 63,9 40		34,2 35 36 43,8 43,8	19,6 18,5 19,3	547 504 513 401 427 406	1,9 1,6 1,8 0,71 1,25 1,12 1,32	MR	

Les valeurs en rouge indiquent la puissance thermique nominale $P_{1_N}^I$ (température ambiante 40° C, service continu, voir chap. 3.2).

1) Puissance pour service continu S1; pour services S2... S10 il est possible de les **augmenter** (chap. 2b): P_{2r} M_2 augmentent et fs diminue de façon proportionnelle.

2) Pour la désignation complète dans la commande, voir chap. 3.1.

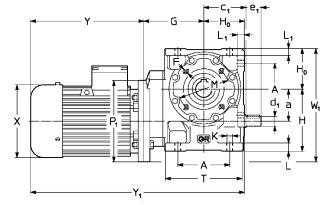
* Position de montage **B5R** (voir tableau chap. 2b).

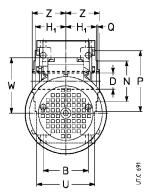
Tableaux de sélection motoréducteurs

_
 _
_

<i>P</i> k\	N	//₂ min ⁻¹	P ₂	M₂ daN m	fs	Riduttore - Motore Gear reducer - Motor 2)	j
22	16,1 16,1	45 56 56 56	19,5 19,2 19,2 19,4	413 327 327 327 331	2,24 0,71 0,85 1,32	MR V 250 - 55 × 400 200 L (MR V 160 - 48 × 350 180 L 4 MR V 161 - 48 × 350 180 L 4 MR V 200 - 48 × 350 180 L 4	25 1 25 1 25 1 25
	17,4 17,4	56,3 56 70 70 70	19,7 19,6 19,4 19,4 19,6	334 333 265 265 267	1,5 2,36 0,85 1 1.6	MR V 160 - 48 × 350 180 L	25 1 20 1 20
		69,2 70 87,5 87,5	19,8 19,7 19,6 19,6	274 268 214 214	1,8 2,8 1 1,18	MR	13 1 20 1 16 1 16
		87,5 108 108 108 140	19,9 19,9 19,9 20 20.1	217 177 177 177 137	1,4 2,12	MR V 200 - 48 × 350 180 L 4 MR V 160 - 48 × 350 180 L 4 MR V 161 - 48 × 350 180 L 4 MR V 200 - 48 × 350 180 L 4 MR V 160 - 48 × 350 180 L 4	1 13 1 13
30	14,9 17,3	140 140 13,7 17,5	20,1 20,1 24,1 24,4	137 1679 1332	1,4 1,6 0,67 0,8	MR V 160 - 48 × 350 180 L 4 MR V 161 - 48 × 350 180 L 4 MR IV 250 - 55 × 400 200 L 4 MR IV 250 - 55 × 400 200 L 4	1 10 102
	21,4 22,2 23,2 22,8	21.9 21.9 22,2 27,4	25,9 25,6 24,3 26,1	1129 1119 1046 912	1 0,85 0,71 1,25	MR IV 250 - 48 × 350 200 L * 4 MR IV 250 - 55 × 400 200 L 4 MR V 250 - 55 × 400 200 L 4 MR IV 250 - 48 × 350 200 L * 4	63,9 64 63
	22,0 25 17 17,7	27,4 28 28 35 35	26,1 24,9 26,1 24,9	891 849 713 680		MR IV 250 - 55 × 400 200 L	50 50 4 50 4 40
	19,9 19,4	35 35 43,8 43,8	26,3 25,2 26,7 25,4	719 687 582 554	1,4 1,18 0,95 0,85	MR IV 250 - 55 × 400 200 L 4 MR V 250 - 55 × 400 200 L 4 MR IV 200 - 48 × 350 200 L 4 MR V 200 - 55 × 400 200 L 4	40 40 41 32 41 32
	25,1	43,8 43,8 56	26,9 26,3 26,4	587 574 451	1,7 1,25 0,95	MR V 250 - 55 × 400 200 L	32 32 32 4 25

	P_1	// ₂	P_2	M_2	fs.	Riduttore - Motore	j
	kW	min ⁻¹	kW	daN m		Gear reducer - Motor	
	1)					2)	
30		56	26,7	455	1,7		1 25
		70 70	26,7 26,8	364 366	1,18 2,12		1 20 1 20
		87,5 87,5	27,1 27,3	296 298	1,4 2,5		16 1 16
		108	27,3	242	1,6	MR V 200 - 55 × 400 200 L	13
37	25 25,7	28 28	32,2 30,7	1099 1047	0,95 0,75		50 50
	26,4 27,3	35 35	32,5 31,1	886 848	1,12 0,95		40 4 40
	19,4 31,2	43.8 43.8 43.8	31,3 33,2 32,4	683 724 708	0,67 1,32 1	MR IV 250 - 60 × 450 225 S	32 32 32 32
	25,1	56 56	32,6 32,9	556 561	0,75 1,4		1 25 1 25
	27	70 70	32,9 33,1	449 451	0,95 1,7		1 20 1 20
	31,3	87,5 87,5	33,5 33,7	365 367	1,12 2		16 1 16
		108	33,7	299	1,32	MR V 200 - 55 × 400 200 LG	13
45	25	28	39,2	1336	0,8	MR IV 250 - 60 × 450 225 M	50
	26,4 27,3	35 35	39,5 37,8	1078 1031	0,95 0,8		40 4 40
	31,2 35,5	43,8 43,8	40,3 39,4	881 861	1,12 0,85		32 32
		56	40	682	1,12	MR V 250 - 60 × 450 225 M	1 25
		70	40,2	549	1,4		1 20
		87.5	40,9	447	1,6	MR V 250 - 60 × 450 225 M	1 16
55	35,5	43,8	48,2	1052	0,71		32
	39,4	56	48,9	834	0,95	MR V 250 - 60 × 450 250 M *	
	41,2	70 87,5	49,2 50	671 546	1,12 1.32	MR	
		3. 13	00	1 0 10	1,02	1 200 00 × 100 200 W	.,


Les valeurs en rouge indiquent la puissance thermique nominale Pt_N (température ambiante 40°C, service continu, voir chap. 3.2).

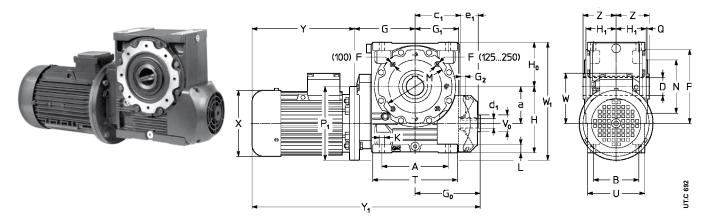

¹⁾ Puissance pour service continu S1; pour services S2 ... S10 il est possible de les **augmenter** (chap. 2b): P₂, M₂ augmentent et fs diminue de façon proportionnelle. 2) Pour la désignation complète dans la commande, voir chap. 3.1.

* Position de montage **B5R** (voir tableau chap. 2b).

MR V 32 ... 81

Exécution¹⁾

normale UO3A vis sortante UO3D

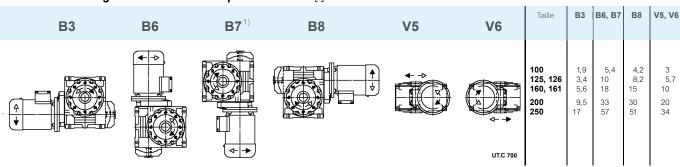

	Taille	а	Α	С	D	d Ø	F	G	Н	H _o	Н	K	L	M	N Ø	P Ø	Т	Z	P Ø	X Ø	١		١		₩ ≈	₩ ≈	N	1assae	3
réd.	moteur				H7				h11	h11	h12				h6					*								kg	
	B5		В			e ₁	2)						L			ø	U					3)		3)			8)		3)
32	63 71	32	61	51	19	11	M5	76	71	48	34,5	7	10	75	55	90	91	39	140 160	123 138	189 216	244 278	313 340	368 402	95 112	165 192	4	9 11	11 14
	71 B5R		52			20	4)						8,5		5)	3	66		140	138	235	297	359	421	112	182	4	11	14
40	63 71	40	70 62	57,5	24	14 25	M6 4)	87 87	82	56	41,5	9,5	12 10	85	68 5)	105 3	106 80	46	140 160	123 138	189 216	244 278	332 359	387 421	95 112	166 192	7 7	12 14	14 17
	80 ⁹⁾		02			23	4)	99					10		3)	J	00		200	156	233	302	376	445	121	221	8	20	23
	80 B5R ⁹⁾							87											160	156	254	323	397	466	121	201	7	19	22
50	63 71	50	86 75	70,5	28	16 30	M6 4)	98 98	100	67	49	9,5	13 12	100	85 5)	120 3	126 95	53	140 160	123 138	189 216	244 278	354 381	409 443	95 112	187 197	10 11	15 18	17 21
	80 ⁶⁾		15			30	4)	98					12		3)	3	35		200	156	233	302	398	467	121	221	12	24	27
	90 ⁹⁾							110											200	176	287	-	452	-	141	241	12	31	-
63	90 B5R ⁹⁾	63	102	83	32	19	M8	98 118	125	80	58,5	11.5	16	100	80	120	151	63	200 160	176 138	287 216	- 278	452 414	476	141 112	241	12 16	31 23	26
64	80	00	90	00	02	30	IVIO	118	120	00	00,0	11,0	14	100	00	3	114	00	200	156	233	302	431	500	121	243	17	29	32
	90							118											200	176	287	366	485	564	141	243	17	36	42
	100 100 B5R							130 118											250 200	194 194	310 337	405 432	508 535	603 630	151 151	276 251	18 17	44 43	48 47
80 81	80 90	80	132 106	103	38 (80)	24 36	M10	138	150	100	69,5	14	20 17	130	110	160 3,5	189 135	75	200 200	156 176	233 287	302 366	471 525	540 604	121	280 280	26 26	38	41
01	100 ⁷⁾		106		40	30							17			3,3	135		250	194	310	405	548	643	141 151	305	28	45 54	51 58
	112 ^{7) 9)}				(81)														250	218	336	-	574	-	163	305	28	63	ı –

- 1) Pour l'exécution du moteur, voir chap. 3.1.
 2) Longueur utile du filetage 2 · F.
 3) Valeurs valables pour moteur frein.
 4) Trous tournés de 45° par rapport au schéma.
 5) Tolérance t8.
 6) Sur demande et avec supplément de prix, cote P₁ = 160: nous consulter.
 7) Sur demande pour 100L 4, 112M 4 aussi position de montage **B5R** (chap. 2b) à l'exception de la grand. 81.
 8) Valeurs valables pour motor^oducteur sans moteur.
 9) **Moteur frein** (cat. TX) **pas possible**.

Positions de montage - sens de rotation - et quantités d'huile [l]

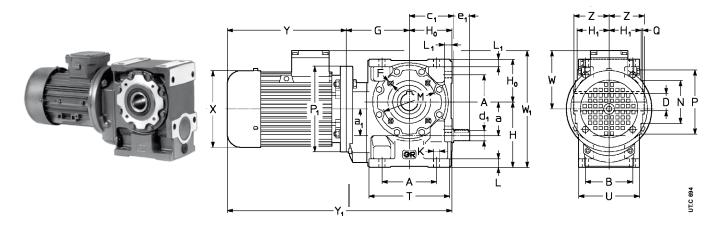
В3	В6	В7	B8	V5	V6	Taille	В3	B6, B7	В8	V5, V6
4			↑ ↓		UY.C 693	32 40 50 63, 64 80, 81	0,16 0,26 0,4 0,8 1,3	0,2 0,35 0,6 1,15 2,2	0,16 0,26 0,4 0,8 1,7	0,16 0,26 0,4 0,8 1,3

MR V 100 ... 250


Exécution¹⁾

UO2A5) normale

T	aille	а	Α	С	D Ø	d Ø	F	G	\mathbf{G}_0	G	\mathbf{G}_{2}	Н	\mathbf{H}_0	Н	K	L	M	N Ø	P Ø	T	V ذ	Z	P	X	١		١		₩ ≈	₩ ≈	N	Masse	•
réd.	moteur				H7							h11	h11	h12				h6			max		8									kg	
	В5		В			e ₁	2)						L						Q	U					ĺ	4)		4)			8)		4)
100	90 100 112	100	180 131	130	48	28 42	M12	170	180	122	11	180	125	84,5	16	23	165	130	200 3,5	236 165	45	90	200 250 250			435	686	716 755 785	163	325 350 350	44 47 47	63 73 82	69 77 86
125	132 ⁷⁾	125	225	155	60	32	M12 ⁸	190 205	221	148	15	225	150	99.5	18	28	215	180	250	287	50	106		257 194	445 310			923 831	194 151	375 400	48 80	117 106	126
126	112 132 160 ^{6) 9)}	125	155	100	ю	58	IVI 12	205	221	148	15	225	150	99,5	18	28	215	180	4	194	50	106	250 300	218	336 445	435	762	861 979	163 194	400 400 425 425	80 83	115 152	119
160 161	112 132 160 180 ^{8) 9)}	160	272 183		70 (1 60) 75 (1 61)	38 58	M14 ⁸	247 260	255	178	15	280	180	118,5	22	33	265	230	300 4	345 232	60	125	250 300 350	218 257 314	336 445 573	435 553 640	838 947 1088	937 1055	163 194 258	465 490 515	140 143 146	175 212 279	179 221 260
200	132 160 180 200 ⁹⁾	200	342 214	235	90	48 82	M16 ⁸	292 305	324	222	20	335	225	137,5	27	40	300	250	350 5	431 270	80	150	300 350 350	257 314	445 573 613	553 640	1061 1202	1169 1269 1363	194 258 278	575 600	245 248 248	314 381 405	323 362 406
250	160 180 200	250	425 250	287	110	55 82	M20 ⁸ 3)		379	277	20	410	280	163	33	50	400	350	450 5	537 320	80	180	350 350 400	314 354 354	573 613 654	734	1393	1473 1473	258 278 278	705 705 730	400 400 405	533 557 651	514 558 587
	225 250 ⁶⁾							370															450 450		710 710		1459 1459			755 755		734 866	_


- 1) Pour l'exécution du moteur, voir chap. 3.1.
 2) Longueur utile du filetage 2 · F.
 3) Trous tournés de 22° 30' par rapport au schéma.
 4) Valeurs valables pour moteur frein.
 5) Exécution prévue pour vis sortante (chap. 2)..
 6) Position de montage B5R (chap. 2b).
 7) Sur demande pour 132M 4 aussi position de montage B5R (chap. 2b).
 8) Valeurs valables pour motoréducteur sans moteur.
 9) Moteur frein 132M, 160, 180L, 200 (cat. TX) pas possible.

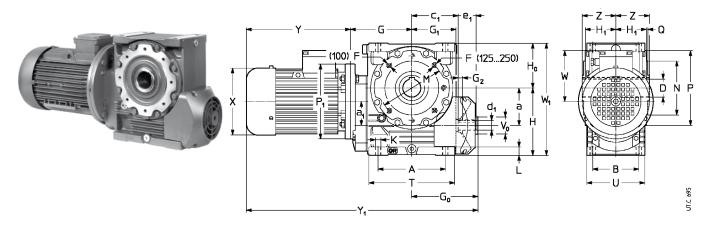
Positions de montage - sens de rotation - et quantités d'huile [l]

1) Pour les tailles 200 et 250, la position de montage **B7** avec $n_1 > 710 \, \mathrm{min}^{-1}$, comporte un supplément de prix

MR IV 32 ... 81

Exécution¹⁾

normale UO3A vis sortante UO3D


Ta	aille	а	Α	С	D	d	F	G	Н	\mathbf{H}_0	H ₁	K	L	M	N Ø	P	T	Z	P	X)		١	′	W ≈	W ≈		Masse	;
réd.	moteur				H7				h11	h11	h12				h6									•				kg	
	B5	а	В			е	2)						L			Q	U					3)		3)			8)		3)
32	63	32 32	61 52	51	19	11 20	M5 4)	76	71	48	34,5	7	10 8,5	75	55 5)	90 3	91 66	39	140	123	189	244	313	368	95	166	4	9	11
40	63 71	40 40	70 62	57,5	24	14 25	M6 4)	87	82	56	41,5	9,5	12 10	85	68 5)	105 3	106 80	46	140 160	123 138	189 216	244 278	332 359	387 421	95 112	177 194	7 7	12 14	14 17
50	63 71 80 [©]	50 40	86 75	70,5	28	16 30	M6 4)	98	100	67	49	9,5	13 12	100	85 5)	120 3	126 95	53 69	140 160 200	123 138 156	189 216 233	244 278 302	354 381 398	409 443 467	95 112 121	185 202 221	10 11 12	15 18 24	17 21 27
63 64	71 80 90	63 50	102 90	83	32	19 30	M8	118	125	80	58,5	11,5	16 14	100	80	120 3	151 114	63	160 200 200	138 156 176	216 233 287	278 302 366	414 431 485	476 500 564	112 121 141	224 233 253	16 17 17	23 29 34	26 32 40
80 81	71 80 90	80 50	132 106	103	38 (80) 40	24 36	M10	138	150	100	69,5	14	20 17	130	110	160 3,5	189 135	75	160 200 200	138 156 176	216 233 287	278 302 366	454 471 525	516 540 604	112 121 141	250 250 261	26 27 27	33 39 44	36 42 50
	100 ⁷⁾				(81)														200	194	337	432	575	670	151	271	27	51	55

- 1) Pour l'exécution du moteur, voir chap. 3.1.
 2) Longueur utile du filetage 2 · F.
 3) Valeurs valables pour moteur frein.
 4) Trous tournés de 45° par rapport au schéma.
 5) Tolérance t8.
 6) Sur demande et avec supplément de prix, cote P₁ = 160 (p.m. B5A, voir chap. 2b): nous consulter.
 7) Position de montage **B5R** (voir chap. 2b);
 8) Valeurs valables pour motoréducteur sans moteur.

Positions de montage - sens de rotation - et quantités d'huile [I]

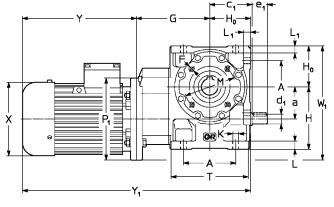
	•		•								
	В3	В6	В7	B8	V5	V6	Taille	В3	B6, B7	В8	V5, V6
. (↑			•		UT.C 696	32 40 50 63, 64 80, 81	0,2 0,32 0,5 1 1,5	0,25 0,4 0,7 1,3 2,5	0,2 0,32 0,5 1 2	0,2 0,32 0,5 1 1,5

MR IV 100 ... 250

Exécution¹⁾

UO2A5) normale

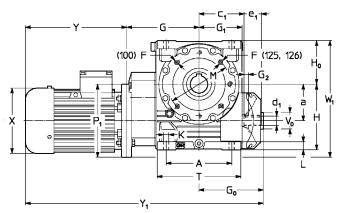
Т	aille	а	Α	С	D	d Ø	F	G	$\mathbf{G}_{\scriptscriptstyle{0}}$	G	\mathbf{G}_2	Н	\mathbf{H}_{0}	Н	K	L	M	N Ø	P Ø	Т	V ذ	Z	P	X	١	′		′	₩ ≈	W ≈	N	Masse	
réd.	moteur				H7							h11	h11	h12				h6			max		*									kg	
	B5	a₁	В			Ф	2)												Q	J						4)		4)			7)		4)
100	80 90 112	100 63	180 131	130	48	28 42	M12	170	180	122	11	180	125	84,5	16	23	165	130	200 3,5	236 165	45	90	200 200 250	156 176 194	233 287 310		583 637 660	652 716 755	121 141 151	305 305 305	45 45 48	57 64 74	60 70 78
125 126	90 100 112	125 80	225 155	155	60	32 58	M12 ⁸	205	221	148	15	225	150	99,5	18	28	215	180	250 4	287 194	50	106		218	336		713 736 762	792 831 861	141 151 163	375 375 375	83	109 118	125
160 161	132 100 112 132 160 180M	160 100	272 183		70 (1 60) 75 (1 61)	38 58	M14 ⁸	247	255	178	15	280	180	118,5	22	33	265	230	300 4	345 232	60	125	250 250 300 350	194 218 257 314	445 573	405 435 553 640	1088		151 163 194 258	460 478	140 140 145 150	166 175 214 283	233 264
200	100 112 132 160 180 200 [©]	200 100	342 214	235	90	48 82	M16 ⁸	292 305	324	222	20	335	225	137,5	27	40	300	250	350 5	431 270	80	150	250 250 300 350 350 350	218 257	573 613	553 640 734	1061 1202 1242	1169 1269	194 258 278	560 560 560 560	245 251 255 255	280 319 388 412	328
250	132 160 180 200 225	250 125	425 250	287	110	55 82	M20 ⁸ 3)	360 370	379	277	20	410	280	163	33	50	400	350	450 5	537 320	80	180		354 354	613	640 734 734	1352	1379 1473 1473	278 278	690 690	410 410	543 567 656	568 592

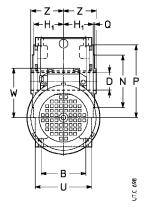

Position de montages - sens de rotation - et quantités d'huile [I]

	•		•	L 3			_			_	
	ВЗ	B6 ¹⁾	В7	В8	V5	V6	Taille	В3	B6, B7	В8	V5, V6
↑		4		Ŷ.		UT.C 701	100 125, 126 160, 161 200 250	2,1 3,8 6,5 10,4 18,3	6,3 11,6 20,8 38 67	4,5 8,8 16,5 31,5 53	3,3 6,3 11,2 21,2 35,7

¹⁾ Pour les tailles 100 ... 250 la position de montage ${\bf B6}$ comporte un supplément de prix.

¹⁾ Pour l'exécution du moteur, voir chap. 3.1.
2) Longueur utile du filetage 2 · F.
3) Trous tournés de 22° 30' par rapport au schéma.
4) Valeurs valables pour moteur frein.
5) Exécution prévue pour vis sortante (voir chap. 2).
6) Position de montage **B5R** (chap. 2b).
7) Valeurs valables pour motoréducteur sans moteur.


MR 2IV 40 ... 81


Exécution¹⁾

normale vis sortante UO3A UO3D

MR 2IV 100 ... 126

Exécution¹⁾

normale

UO2A⁴⁾

Ta	aille	а	Α	С	D	d	F	G	$\mathbf{G}_{\scriptscriptstyle{0}}$	G	\mathbf{G}_2	Н	\mathbf{H}_{0}	Н	K	L	L	M	N	P	Т	V ₀	Z	P	X	١		١	′	W	W		Ma	sse
réd.	moteur				H7	Ø						h11	h11	h12	V			V	h6	W		max		≈									k	g
	B5		В			е	2)						L							ø	U						3)		3)			7)		3)
40	63	40	70 6	57,5	24	14 25	M6 5)	106	1	1	-	82	56	41,5	9,5	12	10	85	68 6)	105 3	106 80	-	46	140	123	189	244	351	406	95	166	7	12	14
50	63 71	50	86 75	70,5	28	16 30	M6 5)	117	1 1	_	_	100	67	49	9,5	13	12	100	85 6)	120 3	126 95		53		123 138				428 462		187 197	10 11	15 18	17 21
63 64	71 80	63	102 90	83	32	19 30	M8	145	1	1	-	125	80	58,5	11,5	16	14	100	80	120 3	151 114	П	63		138 156				503 527		223 243	17 18	24 30	27 33
80 81	71 80	80	132 106	103	38 (80) 40 (81)	24 36	M10	165		1	П	150	100	69,5	14	20	17	130	110	160 3,5	189 135		75						543 567		260 280	27 28	34 40	37 43
100	80 90	100	180 131	130	48	28 42	M12	203	180	122	11	180	125	84,5	16	23	-	165	130	200 3,5	236 165		90						685 749		325 325	48 48	60 67	63 73
125 126	90 100 112M	125	225 155	155	60	32 58	M12 ⁸	249	221	148	15	225	150	99,5	18	28	_	215	180	250 4	287 194	50	106	250	194	310	405	780	875	151	375 400 400		99 111 120	105 115 124

- 1) Pour l'exécution du moteur, voir chap. 3.1.
 2) Longueur utile du filetage 2 · F.
 3) Valeurs valables pour moteur frein.
 4) Exécution prévue pour vis sortante (chap. 2).
 5) Trous tournés de 45° par rapport au schèma.
 6) Tolérance t8.
 7) Valeurs valables pour motoréducteur sans moteur.

Positions de montage - sens de rotation - et quantités d'huile [1]

i Ositio	ns de montage -	sens de rotatio	iii - et quantites	o a mane [1]							
	В3	В6	В7	B8	V5	V6	Taille	В3	B6, B7	B8	V5, V6
Şchér	nas pour les grand. 40 8	1 , valables même pou	ur les tailles 100 126.	T V		UT.C 699	40 50 63, 64 80, 81 100 125,126	0,42 0,6 1,2 1,7 2,4 4,2	0,5 0,8 1,55 2,8 6,8 12,8	0,42 0,6 1,2 2,3 4,8 9,3	0,42 0,6 1,2 1,8 3,6 6,8

Tableaux A - Moments de torsion nominaux du réducteur final

					Taille rédu	ucteur fina	l / i engrer	nage à vis				
$\emph{\textbf{n}}_2$	M _{N2} daN m	50 /20 η	M _{2max} daN m	M _{N2} daN m	63 /25 η	M _{2max} daN m	M _{N2} daN m	80 /25 η	M₂ _{max} daN m	M _{N2} daN m	81 /25 η	M₂ _{max} daN m
11,2 9 4,5	20,1 20,5 21,3	0,7 0,68 0,66	33,4 35 38,4	32 33,8 37,8	0,7 0,69 0,66	58 61 68	63 65 72	0,72 0,71 0,68	109 113 127	75 77 82 87	0,72 0,71 0,68	118 123 137
2,24 1,12 0,56	23,9 25 25*	0,64 0,62 0,6	40,2 40,2 40,2	42,9 47,5 47,5	0,64 0,62 0,6	73 73 73	80 80 80*	0,65 0,63 0,61	133 133 133	90 90*	0,65 0,63 0,61	141 141 141
0,28 0,14 ≤ 0,071	25** 25** 25**	0,58 0,57 0,55	40,2 40,2 40,2	47,5 * 47,5 * 47,5 *	0,58 0,57 0,55	73 73 73	80** 80** 80**	0,59 0,58 0,56	133 133 133	90** 90** 90**	0,59 0,58 0,56	141 141 141
M _{2 Taille} [daN m]		25			47,5			80			90	

^{*, **} Dans ces cas fs requis, à condition qu'il résulte toujours \geq 1, peut être réduit de 1,12 (*) ou de 1,18 (**).

Tableau B - Types de groupes

	Tableau B - Types de	groupes			
	Type de groupe		Taille réd	ducteur final	
		50	63	80	81
Ī	R V + R V	R V 50/20	R V 63/25	R V 80/25	R V 81/25
		+ R V ou MR V 32	+ R V ou MR V 32	+ R V OU MR V 40 ⁵⁾ 5) <i>i</i> = 63 n'est pas admis.	+ R V OU MR V 40 ⁵⁾ 5) <i>i</i> = 63 n'est pas admis.
	R V + MR V				
	<i>i</i> _N ≈ 250 1 600	$i_{\text{final}} = 20$	<i>i</i> _{final} = 25	<i>i</i> _{final} = 25	<i>i</i> _{final} = 25
ľ	MR V + R 2I, 3I	MR V 50 – 19×160 – 20 ³⁾	MR V 63 - 19×160 - 25 ³⁾	MR V 80 - 24×200 - 25	MR V 81 - 24×200 - 25
		+ R 2I ou MR 2I, 3I 40	+ R 2I ou MR 2I, 3I 40	+ R 2I, 3I OU MR 2I, 3I 50^{4} pour $M_{N2} \le 60$ daN m MR V 80 - $19 \times 160 - 25^{3}$	+ R 2I, 3I _{OU} MR 2I, 3I 50 ⁴⁾
	MR V + MR 2I, 3I			+ R 2I ou MR 2I, 3I 40	
	$i_{\rm N} \approx 160 \dots 4000$	$i_{\text{final}} = 20$	<i>i</i> _{final} = 25	<i>i</i> _{final} = 25	i final = 25
	MR IV + R 2I	MR IV 50 - 14×140 - 50,7 ²⁾	MR IV 63 - 19×160 - 63,5 ³⁾	MR IV 80 - 19×160 - 63,5 ³⁾	MR IV 81 - 19×160 - 63,5 ³⁾
		+ R 2I ou MR 2I, 3I 32 exécutiom: bout d'arbre Ø 14	+ R 2l ou MR 2l, 3l 40	+ R 2l ou MR 2l, 3l 40	+ R 2l ou MR 2l, 3l 40
	MR IV + MR 21, 31 $i_N \approx 400 \dots 10000$	i _{final} = 50,7	i final = 63,5	<i>i</i> _{final} = 63,5	$i_{\text{final}} = 63.5$

Performances du réducteur initial: à vis, chap. 3.5 ou 3.7 de ce catalogue; coaxial, catalogue E, chap. 3.4 ou 3.6. 1) Entre le réducteur final et le réducteur initial, se trouve un étrier d'accouplement. 2) Le motoréducteur a une bride de fixation (cote P_o chap. 3.10) de 140 mm. 3) Le motoréducteur a une bride de fixation (cote P_o chap. 3.10) de 160 mm. 4) Réducteur avec «bride B5 majorée» (voir cat. E).

Tableau A - Moments de torsion nominaux du réducteur final

			1	aille réducte	eur final / i en	granage à vi	S		
$\emph{\textbf{\emph{n}}}_2$	M _{N2} daN m	100 /25 η	$M_{ m 2max}$ daN m	$M_{ m N2}$ daN m	125 /32 η	$M_{ m 2max}$ daN m	M _{N2} daN m	160 /32 η	$M_{ m 2max}$ daN m
11,2	129	0,74	215	200	0,74	339	372	0,76	636
9	133	0,73	229	208	0,73	361	391	0,75	680
4,5	145	0,69	257	230	0,69	413	435	0,71	784
2,24	154	0,67	268	254	0,66	458	494	0,68	850
1,12	160	0,65	268	279	0,64	468	500	0,65	850
0,56	160*	0,63	268	300	0,61	468	500*	0,63	850
0,28	160**	0,61	268	300*	0,6	468	500**	0,61	850
0,14	160**	0,59	268	300*	0,58	468	500**	0,59	850
≤ 0,071	160**	0,57	268	300*	0,56	468	500**	0,57	850
M _{2 Taille} [daN m]		160			300			500	

^{*, **} Dans ces cas fs requis, à condition qu'il résulte toujours ≥ 1, peut être réduit de 1,12 (*) ou de 1,18 (**).

Tableau B - Types de groupes

Tableau B - Types de grou	ipes		
Type de groupe		Taille réducteur final	
	100	125	160
RV+RV RV+RIV	R V 100/25	R V 125/32	R V 160/32
	R V, IV ou MR V, IV 50	R V, IV ou MR V, IV 63	R V, IV ou MR V, IV 80
R V + MR V R V + MR IV			
<i>i</i> _N ≈ 315 8 000	$i_{\text{final}} = 25$	i _{final} = 32	i _{final} = 32
MR V + R 2I, 3I	MR V 100 - 28×250 - 25	MR V 125 - 28×250 - 32	MR V 160 - 38×300 - 32
25 38	R 2I, 3I _{OU} MR 2I, 3I 63 ⁴⁾	R 2I, 3I _{OU} MR 2I, 3I 63 ⁴⁾	R 2I, 3I _{OU} MR 2I, 3I 80 ⁴⁾
	pour M _{N2} ≤ 112 daN m		$_{\rm pour}$ $M_{\rm N2} \le 400$ daN m
₩ @Pearce	MR V 100 – 24×200 – 25		MR V 160 – 38×250 – 32 ⁵⁾
MR V + MR 2I, 3I	R 2I, 3I _{OU} MR 2I, 3I 50 ⁴⁾		R 2I, 3I _{OU} MR 2I, 3I 64 ⁴⁾
			$pour$ $M_{N2} \le 315 \text{ daN m}$
			MR V 160 - 28×250 - 32
			R 2I, 3I _{OU} MR 2I, 3I 63 ⁴⁾
<i>i</i> _N ≈ 200 5 000	<i>i</i> _{final} = 25	$i_{\text{final}} = 32$	$i_{\text{final}} = 32$
MR IV + R 2I, 3I	MR IV 100 – 24×200 – 63,5	MR IV 125 – 28×250 – 81,1	MR IV 160 - 28×250 - 102
	R 2I, 3I _{OU} MR 2I, 3I 50 ⁴⁾	R 2I, 3I _{OU} MR 2I, 3I 63 ⁴⁾	R 2I, 3I _{OU} MR 2I, 3I 63 ⁴⁾
MR IV + MR 2I, 3I			
$i_{\rm N} \approx 500 \dots 12500$	$i_{\text{final}} = 63,5$	<i>i</i> _{final} = 81,1	<i>i</i> _{final} = 102
Performances du réducteur initial: à vis. chap. 3.5	ou 3.7 de ce catalogue: coaxial, catalogue F.		

Performances du réducteur initial: à vis, chap. 3.5 ou 3.7 de ce catalogue; coaxial, catalogue E.

1) Entre le réducteur final et le réducteur initial, se trouve un étrier d'accouplement.

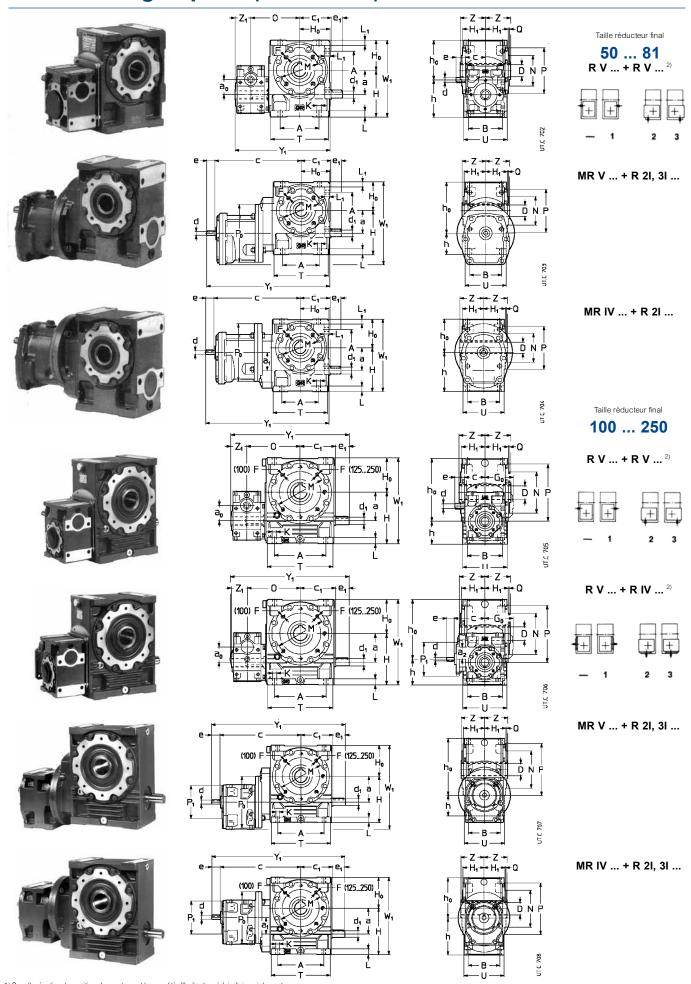
4) Réducteur exécution «bride B5 majorée» (voir cat. E); la taille 63 a un arbre lent réduit à 28 mm: «bride B5 majoré - Ø 28».

5) Le motoréducteur a une bride de fixation (cote P_o chap. 3.10) de 250 mm.

6) Le motoréducteur a une bride de fixation (cote P_o chap. 3.10) de 300 mm.

7) Le motoréducteur a une bride de fixation (cote P_o chap. 3.10) de 350 mm.

Groupes réducteurs et motoréducteurs

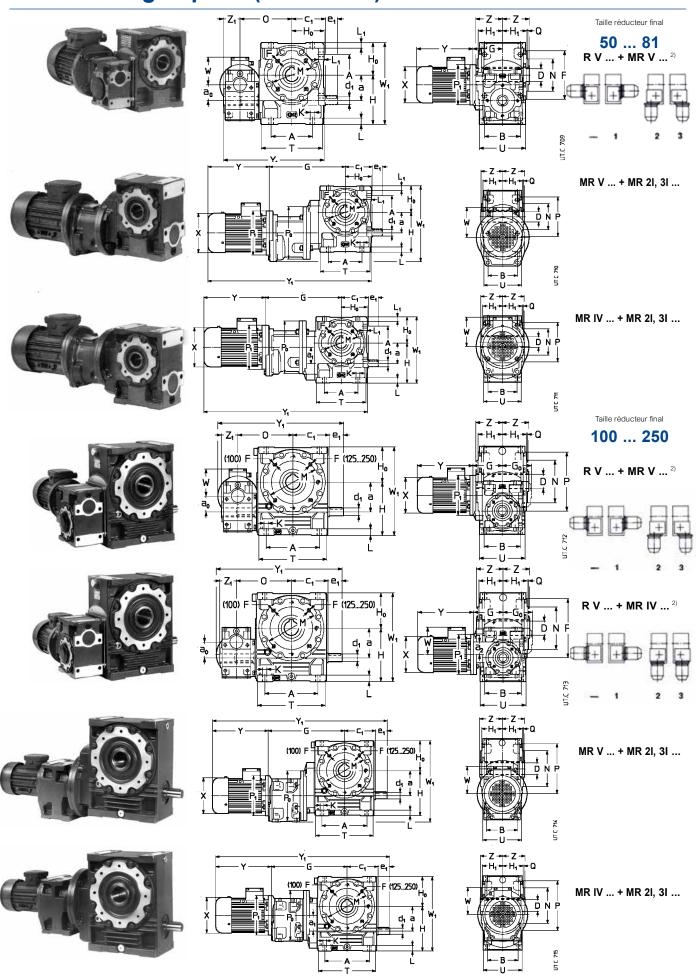

Tableau A - Moments de torsion nominaux du réducteur final

				Taille réducte	ur final / <i>i</i> en	grenage à vi	S		
$oldsymbol{n}_2$	M _{N2} daN m	161 /32 η	M _{2max} daN m	M _{N2} daN m	200 /32 η	$M_{ m 2max}$ daN m	M _{N2} daN m	250 /40 η	M ₂ _{max} daN m
11,2	442	0,76	691	730	0,78	1 201	1 190	0,79	2 013
9	466	0,75	739	767	0,77	1 258	1 270	0,78	2 072
4,5	516	0,71	851	851	0,73	1 487	1 440	0,73	2 467
2,24	556	0,68	921	923	0,69	1 662	1 562	0,69	2 812
1,12	560	0,65	921	1 000	0,67	1 736	1 704	0,66	3 034
0,56	560 *	0,63	921	1 000*	0,64	1 736	1 900	0,64	3 134
0,28	560**	0,61	921	1 000**	0,63	1 736	1 900*	0,61	3 134
0,14	560**	0,59	921	1 000**	0,61	1 736	1 900**	0,60	3 134
≤ 0,071	560**	0,57	921	1 000**	0,58	1 736	1 900**	0,57	3 134
M _{2 Taille} [daN m]		560			1 000			1 900	

Tableau B - Types de groupes

таріеац в - Types de grou	ipes		
Type de groupe		Taille réducteur final	
	161	200	250
RV+RV RV+RIV	R V 161/32	R V 200/32	R V 250/40
	R V, IV ou MR V, IV 80	R V, IV ou MR V, IV 100	R V, IV ou MR V, IV 125
RV+MRV RV+MRIV			
UI.C 750			
<i>i</i> _N ≈ 315 10 000	i _{final} = 32	<i>i</i> _{final} = 32	$i_{\text{final}} = 40$
MR V + R 2I, 3I	MR V 161 - 38×300 - 32	MR V 200 – 48×350 – 32	MR V 250 - 55×350 - 40 ⁷⁾
	R 2I, 3I ou MR 2I, 3I 80 ⁴⁾	R 2I, 3I ou MR 2I, 3I 100 ⁴⁾	R 2I, 3I ou MR 2I, 3I 101 ⁴⁾
	pour $M_{N2} \le 400$ daN m MR V 161 – $38_{\times}250 - 32^{5}$	pour $M_{N2} \le 800$ daN m MR V 200 – $48 \times 300 - 32^{6}$	pour <i>M</i> _{N2} ≤ 1 400 daN m
MR V + MR 2I, 3I	R 2I, 3I ou MR 2I, 3I 64 ⁴⁾	R 2I, 3I ou MR 2I, 3I 81 ⁴⁾	MR V 250 - 48×350 - 40 R 2I, 3I ou MR 2I, 3I 100 ⁴⁾
	1 21, 31 32 mil 21, 31 34	pour $M_{N2} \le 670 \text{ daN m}$ MR V 200 - 38×300 - 32 + R 2I, 3I o/or MR 2I, 3I 80 ⁴⁾	1 21, 31 ou line 21, 31 133
$i_{\rm N} \approx 200 \dots 6300$	$i_{\text{final}} = 32$	<i>i</i> _{final} = 32	$i_{\text{final}} = 40$
MR IV + R 2I, 3I	MR IV 161 - 28×250 - 102	MR IV 200 - 38×300 - 81,8	MR IV 250 - 48×350 - 102
	+ R 2I, 3I ou MR 2I, 3I 63 ⁴⁾	+ R 2I, 3I ou MR 2I, 3I 80 ⁴⁾	+ R 2I, 3I ou MR 2I, 3I 100 ⁴⁾
MR IV + MR 2I, 3I			
<i>i</i> _N ≈ 500 16 000	<i>i</i> _{final} = 102	<i>i</i> _{final} = 81,8	$i_{\text{final}} = 102$

2609-22.11 Série A **Rossi**



1) Pour l'exécution, la position de montage et le quantité d'huile des réd. indivi., voir les cat. corr.
2) La position d'accouplement du réducteur initial par rapport au réducteur final doit être précisée en entier uniquement si 1, 2 ou 3. Important toute protection contre les accidents doit être faite aux soins de l'Acheteur (2006/42/EC).

	Taille réducteur	а	a ₁	Α	С	C ₁	D	d	е	d ₁ Ø	F	H	H ₁		h ₀	K	L	M	N Ø	0 ≈	P	P ₀	P ₁	Т	W ₁	Y ₁	Z	Masse
final	initial	a ₀	a ₂	В			H7			e ₁	1)	H ₀					L,		h6	G ₀	Q			U			Z ₁	kg
50 R V	R V 32	50				70,5	28	14	25		M 6	100	49	82	85	9,5	13	100	85	116	120	-	-	126	167	222	53	12
MR V	R 2I 40	32	_	75	220			11	23	30	2)	67		50	117		12		4)	_	3	160		95	204	310	39	18
MRIV	+	L			191			11	20					90	77							140			167	278		18
63 R V	+	63 32		102 90	51 240	83	32	14	25 23	19 30	M 8	125 80	58,5	94 62	111	11,5	16 14	100	80	129 —	120 3	160	_	151 114	205	248 343	63 39	17 23
MRIV	+				240			11	23					112	93							160			205	343		23
80 R V	R V 40	80		132		103	38	16	30		M 10	150	69,5	110	140	14	20	130	110		160	_	-	189	250	299	75	30
81 MR \	R 2I 50 R 3I 50	40	_	106	292 292		(80)	14 11	30 23	36		100		70 70	180 180		17			_	3,5	200 200	140	135	286 286	422 415	46	39 39
	R 2I 40				260		(81)		23					70	180							160	-		267	383		33
MRIV		400	-00	400	260	400	40	11	23	00	1440	400	045	120	130	40	00	405	400	407	000	160	4.40	000	250	383	00	33
100 R V	R V 50 R IV 50	100 50		180 131	70,5 107	130	48	19 11	30 23	28 42	M 12	180 125	84,5	130 90	175 215	16	23	165	130	187 —	200 3,5	_	140	236 165	305 305	412 429	90 53	52 54
MR V	R 2I 63 $i_N \le 12,5$ $i_N \ge 16$				357 357			19 16	40 30					80 80	225 225							250 250	160		357 357	569 559		66 66
	R 3I 63				357			14	30					80	225							250			357	559		66
	R 2I 50 R 3I 50				324 324			14 11	30 23					80 80	225 225							200 200	140		331 331	526 519		58 58
MRIV	R 2I 50 R 3I 50				324 324			14 11	30 23					143 143	162 162							200 200			305 305	526 519		59 59
125 R V	R V 63 R IV 63	125 63		225 155	83 127	155	60	19 14	40 30	32 58	M 12 ⁸	225 150	99,5	163 113	212 262	18	28	215	180	222	250 4	_	160	287 194	375 375	498 515	106 63	88 91
MR V	7 R 2I 63 i _N ≤ 12,5	"			392			19	40	00				100	275						·	250			407	645	00	101
	i _N ≥ 16				392 392			16 14	30 30					100 100	275 275							250 250			407 407	635 635		101 101
MRIV					392 392			19	40 30					180	195 195							250 250			375	645		103
	R 3I 63 i _N ≥ 16				392			16 14	30					180 180	195							250			375 375	635 635		103 103
160 R V 161	R IV 80		100 50		147	187	70 (160)	14	50 30	38 58	M 14 ⁸	280 180	118,5	200 150	260 310	22	33	265	230	268 —	300 4	-	160	345 232	460 460	588 593	125 75	154 157
MR V	R 2I 80 $i_N \le 12,5$ $i_N \ge 16$				477 477		75 (161)	24 19	50 40					120 120	340 340							300 300	200		500 500	772 762		178 178
	R 3I 80 $i_N \le 80$ $i_N \ge 100$				477 477			19 16	40 30					120 120	340 340							300 300			500 500	762 752		178 178
	R 2I 63, 64 $i_N \le 12,5$				434			19	40					120	340							250	160		472	719		160
	R 3I 63, 64 i _N ≥ 16				434 434			16 14	30 30					120 120	340 340							250 250			472 472	709 709		160 160
MRIV	R 2I 63 $i_N \le 12,5$ $i_N \ge 16$				434 434			19 16	40 30					220 220	240 240							250 250			460 460	719 709		163 163
	R 3I 63				434			14	30		0			220	240							250			460	709		163
200 R V	R IV 100 i _N ≤ 160		100 63		181	235	90	19	60 40	48 82	M 16 ⁸	335 225	137,5	235 172	325 388	27	40 —	300	250	328 180	350 5	_	200	431 270	560 560	735 745	150 90	276 281
MR V	$i_{\rm N} \ge 200$ 7 R 2I 100 $i_{\rm N} \le 12,5$				181 585			16 28	30 60					172 135	388 425							350	250		560 620	745 962		281 311
WITC	$i_N \ge 12,5$ $i_N \ge 16$ $i_N \le 80$				585 585			24 24	50 50					135 135	425 425							350 350	200		620 620	952 952		311 311
	$i_{\rm N} \ge 100$ $i_{\rm N} \ge 100$				585			19	40					135	425							350			620	942		311
	R 2I 80, 81 $i_N \le 12,5$ $i_N \ge 16$				522 522			24 19	50 40					135 135	425 425							300 300	200		585 585	889 879		281 281
	R 3I 80, 81 $i_N \le 80$ $i_N \ge 100$				522 522			19	40 30					135 135								300 300			585 585	879 869		281 281
MRIV	R 2I 80 i _N ≤ 12,5				522			24	50					235	325							300			560	889		285
	R 3I 80 $i_N \ge 16$ $i_N \le 80$ $i_N \ge 100$				522 522 522			19 19 16	40 40 30					235 235 235	325 325 325							300 300 300			560 560 560	879 879 869		285 285 285
250 R V	R V 125 R IV 125 i _N ≤ 160	250 125	125 80	425 250	155 216	287	110	32 24	80 50	55 82		410 280	163	285 205	405 485	33	50 —	400	350	401 221	450 5	-	200	537 320	690 690	876 876	180 106	456 464
MR V	$i_{\rm N} \ge 200$ 7 R 2I 100, 101 $i_{\rm N} \le 12,5$				216 640			19 28	40 60					205 160	485 530							350	250		690 725	876 1069		464 465
IVIIX	R 21 100, 101 $i_N \le 12.5$ $i_N \ge 16$ R 31 100, 101 $i_N \le 80$ $i_N \ge 100$				640 640 640			24 24	50 50 40					160 160 160	530 530							350 350 350 350	230		725 725 725 725	1059 1059 1049		465 465 465
MRIV					640			28	60					285	405							350			690	1069		471
	R 3I 100 $i_N \ge 16$ $i_N \le 80$ $i_N \ge 100$				640 640 640				50 50 40					285 285 285	405							350 350 350			690 690 690	1059 1059 1049		471 471 471

Rossi 2609-22.11 Série A

Longueur utile du filetage 2 · F.
 Trous tournés de 45° par rapport au schéma.
 Trous tournés de 22° 30' par rapport au schéma.
 Tolérance t8.

1) Pour l'exécution, la position de montage et le quantité d'huile des réducteurs individuels, voir les catalogues correspondants.
2) La position d'accouplement du réducteur initial par rapport au réducteur final doit être précisée en entier, uniquement si 1, 2 ou 3. Important toute protection contre les accidents du travail doit être faite aux soins de l'Acheteur (2006/42/EC).

	Tail	e réduct	eur		а	a ₁	A	C ₁	D Ø	d ₁ Ø	F	G	H h11	H ₁ h12	K	M	N Ø	O ≈	P Ø	P ₀	P ₁	T Ø	W ₁	Z ≈	X Ø ≈		 Y ≈	Y	1 1 ×	W ≈	N	Masse kg	,
final			initial		a ₀	a ₂	В		H7	e ₁	1)		H ₀		L		h6	G ₀	Q			U	Z ₁		≈		C)		0)	6)	7.	r.g I	۵)
	v V	MR V MR 2I,	31	32 63 40 63	32	40	86 75	70,5	28	16 30	M6 2)	76 211 211	h11 100 67	49	9,5 13 12	100	85 4)	116 –	120 3	160	140 140 160	126 95	177 204 204	53 39	123 123 138	189 189 216	6) 244 244 278	253 467 494	6) 253 522 556	6) 95 95 112	7) 13 18 18	18 23 25	6) 20 25 28
	IV V	MR 2I,	31	71 32 63 32 63		50	102	83,5	32	19	M8	186 76	125	58,5		100	80	129	120	140	140	151	185 205	63	123	189	_	442 279	497 279	95 95	16 18	21	23 25
MR I	I۷	MR 21,	31	40 63 71		-	90	100	20	30	MAG	231	80	00.5	16 14	100	110	-	3	-	140 160	114	230 ⁵⁾ 224 ⁵⁾	39	123 138	189 216	244 278	500 527	555 589	95 112	23	28 30	30 33
80 R 81 MR	v v	MR V	31	40 63 71 50 63	40	50	132 106	103	38 (80) 40	24 36	M10	87 87 282	150 100	69,5	14 20 17	130	110	153	160 3,5	- 200	160	189 135	250 250 286	75 46	123 138 123	189 216 189	278 244	323 333 571	323 333 626	95 112 95	31 31 39	36 38 44	38 41 46
		MR 21,	31	71 80 40 63					(81)			282 282 251								200 200 160	160 200 140		286 286 267		138 156 123	216 233 189	_	598 615 540	660 684 595	112 121 95	40 41 33	47 53 38	50 56 40
MR I		MR 2I,		71 40 63								251 251								160 160	160 140		267 250		138 123	216 189	278 244	567 540	629 595	112 95	33 33	40 38	43 40
100 R	V	MR V MR IV		50 63 50 71	100	63 40	180 131	130	48	28 42	M12	251 98 89	180 125	84,5	16 23	165	130	187	200 3,5	160 - -	160 140 160	236 165	250 305 305	90 53	138 123 138	216 189 216	244	567 429 439	629 429 439	95 112	33 54 55	40 59 62	43 61 65
MR	V	MR 21,	31	63 <u>71</u>								98 347 347			-					250 250	200 160 200		305 357 357		156 138 156	_	_	459 735 752	459 797 821	121 112 121	56 67 68	68 74 80	71 77 83
		MR 21,	31	90 50 63)							347 314								250 250 200	200 200 140		357 331		176 123	287 189	366	806 675	885 730	141	68 59	85 64	91 66
MR I	IV	MR 21,	31	71 80 50 63)							314 314 314								200 200 200	160 200 140		331 331 305		138 156 123	216 233 189	278 302 244	702 719 675	764 788 730	112 121 95	60 61 59	67 73 64	70 76 66
				71 80		00	005	455		00	14408	314 314	005	00.5	10	045	100	000	050	200	160 200	007	305 305	100	138 156	216 233	278 302	702 719	764 788	112 121	60 61	67 73	70 76
125 R	V	MR V MR IV		63 <u>71</u> 63 <u>80</u> 90	63	80 50	115	155	60	32 58	M12 ⁸	118 118 118	225 150	99,5	18 28 –	215	180	222	250 4	-	160 200 200	287 194	375 375 375	106 63	138 156 176	216 233 287	278 302 366	515 535 535	515 535 535	112 121 141	90 91 91	97 103 108	100 106 114
MR I		MR 2I,	31	63 <u>71</u> 80 90)							382 382 382								250 250 250	160 200 200		407 ⁵⁾ 375 ⁵⁾		138 156 176	216 233 287	278 302 366	811 828 882	873 897 961	112 121 141	103 104 104	110 116 121	113 119 127
160 R	V	MR V MR IV		10 80 71	160		272	187	70		M14 ⁸	382 138	ł	118,5	22	265	230	268	300	250 –	250 160	345	460	1	194 138	310 216	405 278	905 593	1000 593	151 112	106 156	128 163	132 166
101		WIK IV		80 80 90 100)	50	183		(160) 75 (161)	58		138 138 138	180		33			_	4	-	200 200 250	232	460 460	75	156 176 194	233 287 310	302 366 405	613 613 638	613 613 638	121 141 151	157 157 159	169 174 181	172 180 185
MR	٧	MR 2I,	31	80 80 90 100	1							466 466 466								300 300 300	200 200 250		500 500 500		156 176 194	233 287 310	302 366 405	944 998 1021	1013 1077 1116	121 141 151	178 178 179	190 195 202	193 201 206
				113	2							466 469								300 300	250 250 300		500 500		218 257	336 445	435 553	1047 1159	1146 1267	163 194	179 180	214 249	221 258
		MR 21,	31	63 <u>71</u> 64 <u>80</u> 90								424 424 424								250 250 250	160 200 200		472 472 472		138 156 176	216 233 287	278 302 366	902 956	947 971 1035	112 121 141	160 161 161	167 173 178	170 176 184
MD	n/	MD 01	21	10	0 2							424 424								250 250	250 250		472 472		194 218	310 336	405 435	979 1005	1074 1104	151 163	162 162	185 197	189 204
WIRC	"	MR 21,	31	63 <u>71</u> 80 90)							424 424 424								250 250 250	200		460 460		138 156 176	216 233 287	302	902 956	947 971 1035	112 121 141	163 164 164	170 176 181	173 179 187
200 R	٧	MR V MR IV		100 80 100 90	200		342 214	235	90	48 82	M16 ⁸	424 170 170	335 225	137,5	27,5 40	300	250	328 180	350 5		250 200 200		460 560 560	150 90	194 156 176		302	745	1074 745 745	151 121 141	165 280 280	188 292 297	
				100	2							170 170			-					-	250 250		560 560		194 218	310 336	405 435	770 770	770 770	151 163	281 281	304 316	308 323
MR '	v	MR 21,	31	100 90 100 111	ס							574 574 574								350 350 350	250		620 620		176 194 218	287 310 336	405	1201	1257 1296 1326	141 151 163	309 312 312	328 335 347	339
		MR 2I,	31	80 80	2							574 511								350 300	300 200		620 585		257 156	445 233	553 302	1336 1061	1444 1130	194 121	314 281	383 293	392 296
				81 <u>90</u> 100 111	0							511 511 511								300 300 300	250		585 585 585		176 194 218	287 310 336	405	1115 1138 1164	1233	141 151 163	281 282 282	298 305 317	
MR I	IV	MR 2I,	31	80 80 90								514 511 511								300 300 300	200		585 560 560		257 156 176	233 287	302	1276 1061 1115	1130	194 121 141	285	353 297 302	300
				10	0 2		15-	0.55			^	511 511		16-	0	10-	0.5-		15-	300 300	250 250	===	560 560	16-	194 218	310 336	405 435	1138 1164	1233 1263	151 163	286 286	309 321	313 328
250 R	v	MR V MR IV		125 90 125 10 11:	125		425 250	287	110	55 82	M16 ⁸	205 205 205	1	163	33 50 –	400	350	401 221	450 5	-	200 250 250		690 690	180 106	176 194 218	_	366 405 435	876 895 895	876 895 895	141 151 163	465	481 488 500	
MR I		MR 2I,	31	13:	2							205 629								- 350	300 200		690 725 ⁵⁾ 690 ⁵⁾		257 176	445 287	553 366	920 1285	920 1364	194 141	467 466	536 485	545 491
mix	•			101 112 133 160	2							629 629 645								350	300		09U-		194 218 257 314	336 445	435 553	1308 1334 1443 1587	1433	151 163 194 258	469 471	504 540 607	511 549

5) La valeur supérieure est valable pour **MR V**.
 6) Valeurs valables pour moteur frein.
 7) Valeurs valables pour motoréducteur sans moteur.

¹⁾ Longueur utile du filetage 2 · F.
2) Trous tournés de 45° par rapport au schéma.
3) Trous tournés de 22° 30' par rapport au schéma.
4) Tolérance t8.

Position de montage dé reducteur ou motoréducteur initial

Pour faciliter l'individuation de la position de montage des réducteurs et motoréducteurs combinés se référer au tableau suivant où, en fonction de la position de montage du réducteur final et de la position d'accouplement du réducteur ou du motoréducteur initial, sont indiquées les positions de montage du réducteur ou motoréducteur initial même.

Position de montage du réducteur initial

Posit. de			Position de montag	e réducteur final		
montage	В3	B6	B7	B8	V5	V6
-	B8	R V	+ R V V5	R V + R IV	B7	B6
1	B8	V 5	+ R V V6	R V + R IV	B6	B7
2	B7	R V V6	+ R V V5	R V + R IV	B3	B8
3	B7	R V	+ R V V6	R V + R IV	B8	B3
	B5 ≤40 B3 ≥50	V1 ≤40 V5 ≥50	R 2I, 3I V3 ≤40 V6 ≥50	MR IV + R 2I, 3I B5 ≤40 B3 ≥50	B5 <40 ¹	B5 ≤40 ¹⁾ B7 ≥50

Dans la plaque d'identification il y a un * dans l'espace de la position de montage B3 sur le cat. E.

Dans la plaque d'identification il y a un * dans l'espace de la position de montage.

Position de montage du **motoréducteur** initial²⁾

Posit. de			Position de montage ré	educteur final		
montage	В3	B6	B7	B8	V5	V6
-	B8	₽ V6	V + MR V	R V + MR IV B3	B7	B6
1	B8	₹ ∨	V + MR V	R V + MR IV B3	B6	B7
2	B7	R '	V + MR V V5	R V + MR IV	B3	B8
3	B7	V5	V + MR V V6	R V + MR IV	B8	B3
	B5 ≤40 B3 ≥50	MR V V1 ≤40 V5 ≥50		MR IV + MR 2I, 3I B5 ≤40 B3 ≥50	B5 <40 ¹	B5 ≤40¹ B7 ≥50

 ¹⁾ La quantité de graisse c'est la même prescrite pour la position de montage B3 sur le cat. E. Dans la plaque d'identification il y a un * dans l'espace de la position de montage.

2) Pour motoréducteur initial à vis la boite à bornes est toujours en position TB3 (voir chap. 3.1).

Charges radiales¹⁾ F_{r1} [daN] sur le bout d'arbre rapide 3.11

Lorsque l'accouplement entre le moteur et le réducteur est réalisé par une transmission qui produit des charges radiales sur le bout d'arbre, il est nécessaire de vérifier que celles-ci soient inférieures ou égales à celles indiquées au tableau. Pour les cas de transmissions les plus communs, la charge radiale F_{r1} est donnée par les formules suivantes:

$$F_{r1} = \frac{2.865 \cdot P_1}{d \cdot n_1}$$
 [daN] pour transmission par courroie dentée

$$F_{r1} = \frac{4775 \cdot P_1}{d \cdot n_1}$$
 [daN] pour transmission par courroies trapézoïdalesi

où: P_1 [kW] est la puissance requise à l'entrée du réducteur, n_1 [min-1] est la vitesse angulaire, d [m] est le diamètre primitif.

Les charges radiales admises dans le tableau sont valables pour des charges agissant sur le bout d'arbre rapide en son milieu, c'est-à-dire à une distance de l'épaulement égale à $0.5 \cdot e$ (e = longueur du bout d'arbre); si elles agissent à $0.315 \cdot e$, les multiplier par 1.25; si elles agissent à $0.8 \cdot e$, les multiplier par 0.8.

										Taille	réducteu	ır								
n ₁ min⁻¹	R V	2 R IV	R V	I0 R IV	RV 5	0 R IV	63 R V	, 64 R IV	80 R V	, 81 R IV	R V	00 R IV	125 R V	, 126 R IV	160 R V	, 161 R IV	R V	00 R IV	R V	50 R IV
1 400	14	11,2	21,2	17	31,5	17	47,5	26,5	71	26,5	106	42,5	160	75	236	170	265	170	375	250
1 120	15	11,8	22,4	18	33,5	18	50	28	75	28	112	45	170	80	250	180	280	180	400	265
900	16	12,5	23,6	19	35,5	19	53	30	80	30	118	47,5	180	85	265	190	300	190	425	280
710	18	14	26,5	21,2	40	21,2	60	33,5	90	33,5	132	53	200	95	300	212	335	212	475	315
560	19	15	28	22,4	42,5	22,4	63	35,5	95	35,5	140	56	212	100	315	224	355	224	500	335
450	20	16	30	23,6	45	23,6	67	37,5	100	37,5	150	60	224	106	335	236	375	236	530	355
355	22,4	18	33,5	26,5	50	26,5	75	42,5	112	42,5	170	67	250	118	375	265	425	265	600	400

¹⁾ Une charge axiale peut agir en même temps que la charge radiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter.

Charges radiales F_{r2} ou axiales F_{a2} [daN] sur le bout d'arbre lent 3.12

Charges axiales F_{a2}

La valeur admissible de F_{a2} se trouve dans la colonne dans laquelle le sens de rotation de l'arbre lent (flèche blanche ou flèche noire) et le sens de la force axiale (flèche entière ou flèche discontinue) correspondent à ceux du réducteur. Le sens de rotation ainsi que le sens de la force sont établis en considérant le réducteur d'un point quelconque pourvu qu'il soit le même pour la rotation et pour la force. Lorsqu'il est possible, se mettre dans les conditions de la colonne de **droite**

Charges radiales F_{r2}

Lorsque l'accouplement entre le réducteur et la machine est réalisé par une transmission qui produit des charges radiales sur le bout d'arbre, il est nécessaire de vérifier que celles-ci soient inférieures ou égales à celles indiquées au tableau.

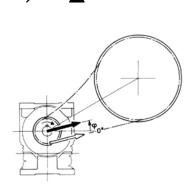
Normalement la charge radiale sur le bout d'arbre lent atteint des valeurs considérables; en effet on a la tendance à réaliser la transmission entre le réducteur et la machine avec un rapport de transmission élevé (pour épargner sur le réducteur) et avec des petits diamètres (pour épargner sur la transmission ou pour exigences d'encombrement).

Évidemment la durée et l'usure des roulements (qui influe négativement même sur les engrenages) et la résistance de l'axe lent limitent la charge radiale admissible.

La valeur élevée que la charge radiale peut atteindre et la nécessité de ne pas dépasser les valeurs admissibles exigent l'exploitation maximale des possibilités du réducteur

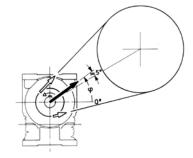
Par conséquent les charges radiales admises au tableau sont en fonction: du produit de la vitesse angulaire n_2 [min⁻¹] par la durée requise des roulements L_h [h], du sens de rotation, de la position angulaire φ [°] de la charge et du moment de torsion requis M_2 [daN m].

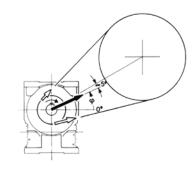
Les charges radiales admises au tableau sont valables pour des charges agissant sur le bout d'arbre lent en son milieu, c'est-à-dire à une distance de l'épaulement égale à $0.5 \cdot E$ (E = longueur du bout d'arbre); si elles agissent à $0.315 \cdot E$, les multiplier par 1.25; si elles agissent à $0.8 \cdot E$, les multiplier par 0.8.


Rossi

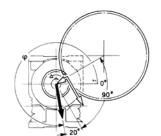
Pour les cas de transmission les plus communs, la charge radiale F_{r2} a la valeur et la position angulaire suivantes :

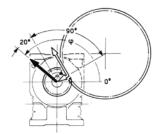
 $F_{r2} = \frac{1910 \cdot P_2}{d \cdot n_2} \text{ [daN]}$

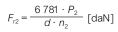

pour transmission par chaîne (levage en général); pour transmission par courroie dentée, remplacer 1 910 par 2 865 · 0·


Rotation

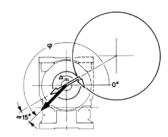
 $F_{r2} = \frac{4775 \cdot P_2}{d \cdot n_2} \text{ [daN]}$

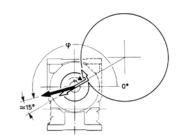

pour transmission par engrenages trapézoïdales





 $F_{r2} = \frac{2032 \cdot P_2}{d \cdot n_2}$ [daN]


pour transmission par engrenage cylindrique droit



pour transmission par rues de friction (caoutchouc sur métal)

où : P_2 [kW] est la puissance requise à la sortie de réducteur, n_2 [min⁻¹] est la vitesse angulaire, d [m] est le diamètre primitif.

IMPORTANT: 0° coïncide avec la demi-droite parallèle à l'axe de la vis et orientée comme indiqué ci-dessus. C'est pourquoi elle suit la rotation de l'axe de la vis comme figure ci-dessous.

$\mathbf{n}_2 \cdot \mathbf{L}_h$	\mathbf{M}_2								\mathbf{F}_{c}	1) 2								Fa	2)
								0"			-								
				F		4	-4	1	1	P	4		m	70				+	
				+	(4)	0.	-	Ψ		TB			176	*					IJ
				è			Lin	4	J	12	*			1				-	+
					1	_							0						i —
min⁻¹ · h	daN m	0	45	90	135	180	225	270	315	0	45	90	135	180	225	270	315		V
355 000	5,3	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	80	125
710 000	3,75	140	150	170	180	180	180	180	160	180	180	150	132	140	170	180	180	80	125
	2,65	150	160	180	180	180	180	180	180	180	180	170	150	150	170	180	180	80	125
900 000	3,75 2,65	125	132	160	180	180	180	170	140	180	180	140	125	125	150	180	180	80	125
	1,9	140 150	140 150	160 170	180 180	180 180	180 180	170 170	150 160	180 180	180 180	150 160	140 150	140 150	160 160	180 180	180 180	80 80	125 125
1 120 000	2,65	125	132	150	180	180	180	160	140	180	170	140	125	125	150	170	180	80	112
	1,9 1,32	140 140	140	150	170	180	180	160	140	180 180	160	140	132	140	150	170	180	80 80	118 118
1 400 000	2,65	118	150 118	160 140	170 160	180 180	170 170	160 150	150 125	180	160 150	150 125	140 112	140 118	150 135	170 160	180 180	80	106
1 400 000	1,9	125	132	140	160	170	170	150	132	170	150	132	125	125	140	160	170	80	106
	1,32	132	132	140	160	160	160	150	140	160	150	140	132	132	140	160	170	80	106
1 800 000	2,65 1,9	106	106	125 132	150 150	170	160	140	118 125	170	140	118 125	100	106	125 125	150	170	71 80	95 95
	1,32	112 118	118 125	132	140	160 150	150 150	140 140	125	160 150	140 140	125	112 118	112 118	132	150 140	160 150	80	95
2 240 000	2,65	95	100	118	140	160	150	132	106	160	132	106	90	95	112	140	160	63	85
	1,9 1,32	106	106	118	140	150	140	132	112	150	132	112	100	106	118	140	150	71	85
2 800 000	2,65	112 85	112 90	125 106	132 132	140 150	140	132 118	118 95	140 150	132 125	118 95	112 80	112 85	118	132	140 150	80 56	90 75
2 000 000	1,9	95	100	112	132	140	140	118	106	140	125	100	95	95	100	132	140	63	80
	1,32	100	106	112	125	132	132	118	106	132	125	106	100	100	112	125	132	71	80
3 550 000	1,9	85	90	100	118	132	125	112	95	132	112	95	85	85	100	118	132	56	71
	1,32 0,95	95 100	95 100	106 106	118 118	125 118	125 118	112 112	100 100	125 118	112 112	100 100	90 95	95 100	100 106	118 118	125 125	63 67	71 75
	-,								max								-	max 80	max 125

																			taille 40
224 000	9	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	112	180
450 000	6,3 4,5	200	200 224	236 250	250 250	250 250	250 250	250 250	224 236	250	250	212 236	190	200 212	236 236	250	250 250	112 112	180 180
560 000	6,3	212								250	250		212 170			250		112	
360 000	4,5	180 200	190 200	224 236	250 250	250 250	250 250	250 250	200 212	250 250	250 250	200 212	170	180 200	212 224	250 250	250 250	112	180 180
	3,15	212	212	236	250	250	250	250	224	250	250	224	212	212	224	250	250	112	180
710 000	6,3	160	170	200	250	250	250	224	180	250	236	180	150	160	190	250	250	112	160
	4,5	180	190	212	250	250	250	224	190	250	236	190	170	180	200	250	250	112	160
	3,15	190	200	212	236	250	250	224	200	250	236	200	190	190	212	236	250	112	170
900 000	6,3	140	150	190	236	250	250	212	160	250	212	160	140	140	180	236	250	106	140
	4,5 3,15	160 180	170 180	190 200	224 224	250 236	236 236	212 212	180 190	250 236	212 212	180 190	160 170	160 170	190 190	224 224	250 236	112 112	150 150
1 120 000	4,5	150	150	180	212	236	224	190	160	236	200	160	140	150	170	212	236	106	132
1 120 000	3.15	160	160	180	212	224	212	200	170	224	200	170	160	160	180	212	224	112	140
	2,24	170	170	190	200	212	212	200	180	212	200	180	170	170	180	200	212	112	140
1 400 000	4,5	132	140	160	200	224	212	180	150	224	180	150	132	132	160	200	224	95	118
	3,15	150	150	170	190	212	200	180	160	212	180	160	140	150	160	190	212	106	125
	2,24	160	160	170	190	200	200	180	160	200	180	160	150	160	170	190	200	112	125
1 800 000	4,5	118	125	150	190	212	200	170	132	200	170	132	112	118	140	180	212	80	106
	3,15 2,24	132 140	140 140	150	180 180	190 190	190 180	170 170	140 150	190	170 170	140 150	132 140	132	150	180 170	200 190	90 100	112 112
2 240 000				160						190				140	150				
2 240 000	4,5 3,15	106 118	112 125	140 140	170 170	200 180	190 180	150 150	125 132	190 180	160 160	118 132	106 118	106 118	132 140	170 170	200 190	71 80	95 100
	2,24	132	132	150	160	170	170	150	140	170	160	140	125	132	140	160	180	90	100
2 800 000	4,5	100	100	125	160	190	180	140	112	180	150	112	90	95	118	160	190	60	90
_ 000 000	3,15	112	112	132	160	170	170	140	118	170	150	118	106	112	125	150	170	71	90
	2,24	118	125	132	150	160	160	140	125	160	150	125	118	118	132	150	170	80	95
3 550 000	3,15	100	106	125	150	160	150	132	112	160	132	112	95	100	118	140	160	63	80
	2,24	106	112	125	140	150	150	132	118	150	132	118	106	106	125	140	150	71	85
	1,6	118	118	125	140	150	140	132	118	150	132	118	112	118	125	140	150	75	85
									max	250								max 112	max 180

¹⁾ Une charge axiale peut agir en même temps que la charge radiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter. 2) Une charge radiale peut agir en même temps que la charge axiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter.

																		1	aille	50
$\mathbf{n}_2 \cdot \mathbf{L}_{\mathrm{h}}$	\mathbf{M}_2								F,	1)								F _a	2)	
								0"			_									
				í		1	-4	1	1	P	14		mt	30						
				+	(Φ)	70-	-	\bigcirc		°T 15	D)		176	7					1	
				-			Lla	44	J	1/2			D-42	4					X)	
					۸	_							Ö,	_				_	† 	
					Δζ									*				+	↓ —	
min ⁻¹ · h	daN m	335	45	90	135 355	180	225 355	270	315	355	45	90 355	135 315	180	225 355	270	315	160	250	
140 000	18	355	355 355	355 355	355	355 355	355	355 355	355 355	355	355 355	355	355	355	355	355 355	355 355	160 160	250	
180 000	12,5 18	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	160	250	—
100 000	12,5	300 335	315 355	355 355	355 355	355 355	355 355	355 355	335 355	355 335	355 355	335 355	280 315	280 335	355 355	355 355	355 355	160 160	250 250	
004.000	9	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	160	250	
224 000	18 12,5	265 300	280 315	355 355	355 355	355 355	355 355	355 355	300 335	355 355	355 355	300 335	250 300	250 300	335 355	355 355	355 355	160 160	250 250	
	9	335	335	355	355	355	355	355	355	355	355	355	315	335	355	355	355	160	250	
280 000	12,5 9	280 300	280 315	335 355	355 355	355 355	355 355	355 355	315 335	355 355	355 355	300 335	265 300	265 300	335 335	355 355	355 355	160 160	250 250	
355 000	12,5	250	265	315	355	355	355	355	280	355	355	280	236	250	300	355	355	160	250	
	9 6,3	280 300	280 300	335 335	355 355	355 355	355 355	355 355	300 315	355 355	355 355	300 315	265 280	280 300	315 335	355 355	355 355	160 160	250 250	
450 000	12,5	224	236	280	355	355	355	315	250	355	335	250	212	212	265	355	355	160	236	—
	9 6,3	250 265	265 280	300 315	355 335	355 355	355 355	315 315	265 280	355 355	335 335	265 280	236 265	250 265	280 300	355 335	355 355	160 160	250 250	
	4,5	280	280	315	335	355	355	315	300	355	335	300	280	280	300	335	355	160 160	250	
560 000	12,5	200	212	265	335	355	355	300	224	355	300	224	190	200	250	335	355	150	212	
	9 6,3	224 250	236 250	280 280	335 315	355 335	355 335	300 300	250 265	355 335	300 300	250 265	212 236	224 250	265 280	335 315	355 355	160 160	224 236	
740,000	4,5	265	265	280	315	335	315	300	280	335	300	280	250	265	280	315	335	160	236	
710 000	12,5 9	180 200	190 212	236 250	315 315	355 335	355 335	265 280	200 224	355 335	280 280	200 224	160 200	170 200	224 236	315 300	355 355	132 160	190 200	
	6,3 4,5	224	236	265	300	315	315	280	236	315	280	236	224	224	250	300	335	160	212	
900 000	12,5	236 160	250 170	265 224	300	315 355	300 315	280 250	250 180	315 335	280 250	250 180	236 140	236 150	265 200	280 280	315 355	160 112	212 170	—
	9	180	190	236	280	315	300	250	200	315	265	200	170	180	224	280	335	140	180	
	6,3 4,5	200 224	212 224	236 250	280 265	300 280	280 280	250 250	224 236	300 280	265 265	224 236	200 212	200 212	236 236	280 265	315 280	160 160	190 190	
1 120 000	9	170	170	212	265	300	280	236	190	300	236	180	160	160	200	265	315	118	160	
	6,3 4,5	190 200	190 200	224 224	265 250	280 265	280 265	236 236	200 212	280 265	236 236	200 212	180 200	190 200	212 224	265 250	280 280	140 150	170 180	
1 400 000	9	150	160	200	250	280	265	212	170	280	224	170	140	140	180	250	300	100	150	_
	6,3 4,5	170 180	180 190	200 212	250 236	265 250	250 250	224 224	190 200	265 250	224 224	180 200	160 180	170 180	200 200	236 236	265 250	125 132	160 160	
1 800 000	9	132	140	180	236	265	250	200	150	265	200	150	125	125	160	224	280	85	132	
	6,3 4,5	150 170	160 170	190 190	224 224	250 236	236 224	200 200	170 180	250 236	212 212	170 180	150 160	150 160	180 190	224 224	250 236	106 118	140 140	
2 240 000	9	118	125	160	224	250	236	180	140	250	190	132	106	112	150	212	265	75	118	
	6,3 4,5	140 150	140	170	212 200	236	224 212	190	150	236 224	190	150	132	132	160	212 200	236 224	95	125 132	
2 800 000	9	106	160 112	180 150	200	224 236	224	190 170	160 125	236	190 180	160 118	150 95	150 100	170 132	200	250	106 63	106	—
	6,3	125	132	160	200	224	212	170	140	224	180	140	118	125	150	200	224	80	112	
	4,5 3,15	140 150	140 150	160 170	190 190	212 200	200 190	170 180	150 160	212 200	180 180	150 160	132 150	140 150	160 160	190 190	212 200	95 100	118 118	
3 550 000	6,3	112	118	140	180	212	200	160	125	200	160	125	106	112	140	180	212	71	100	
	4,5 3,15	125 132	132 140	150 150	180 170	200 180	190 180	160 160	140 140	190 180	170 170	132 140	118 132	125 132	140 150	180 170	200 190	85 90	106 106	
		1							max									max 160	max 2	50
																		1		

2609-22.11 Serie A

¹⁾ Une charge axiale peut agir en même temps que la charge radiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter. 2) Une charge radiale peut agir en même temps que la charge axiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter.

taille **63**, **64**

																			63, 64
$\mathbf{n}_2 \cdot \mathbf{L}_h$	\mathbf{M}_2								F,	1)								F _a	2)
					. /		4	0"		5	to								
						4	4	*	1	. 8	74		M	V					73
				1	(4)	0,	1	97	,	ZZ Z			176	*				-	
				ć			Lin	CP4	u	1	-		U-POSE	1					
					^ _	_							0,	_ ^					T
. 1 .			45	00	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	100	005	070	04.5		4.5	00	105	100	005	070	04.5	+	→
min ⁻¹ · h	daN m 47,5	400	45 425	90 530	135	180 530	225 530	270 530	315 475	530	45 530	90 450	135 355	180 375	225 530	270 530	315 530	236	375
	33,5	475	500	530	530	530	530	530	530	530	530	530	450	475	530	530	530	236	375
112 000	33,5 23,6	425 500	450 500	530 530	530 530	530 530	530 530	530 530	500 530	530 530	530 530	475 530	400 475	425 475	530 530	530 530	530 530	236 236	375 375
140 000	33,5	375	425	530	530	530	530	530	450	530	530	425	355	375	475	530	530	236	375
	23,6	450 475	475 500	530 530	530 530	530 530	530 530	530 530	500 530	530 530	530 530	475 500	425 475	450 475	530 530	530 530	530 530	236 236	375 375
180 000	33,5	335	375	475	530	530	530	530	400	530	530	375	315	335	425	530	530	236	375
	23,6	400	425	500	530	530	530	530	450	530	530	425	375	400	475	530	530	236	375
	17 11,8	425 475	450 475	500 530	530 530	530 530	530 530	530 530	475 500	530 530	530 530	475 500	425 450	425 475	500 500	530 530	530 530	236 236	375 375
224 000	33,5	300	335	425	530	530	530	475	355	530	500	335	280	280	400	530	530	236	375
	23,6 17	355 400	375 425	450 475	530 530	530 530	530 530	500 500	400 425	530 530	500 500	400 425	335 375	355 400	425 450	530 530	530 530	236 236	375 375
	11,8	425	450	475	530	530	530	500	450	530	500	450	425	425	475	530	530	236	375
280 000	23,6	315	335	425	530	530	530	450	375	530	475	355	300	315	400	530	530	236	355
	17 11,8	355 400	375 400	450 450	500 500	530 530	530 530	475 475	400 425	530 530	475 475	400 425	355 375	355 400	425 425	500 500	530 530	236 236	375 375
355 000	23,6	280	315	375	500	530	530	425	335	530	425	315	265	280	355	500	530	236	315
	17 11,8	335 355	335 375	400 400	475 475	530 500	500 475	425 425	355 375	530 500	450 450	355 375	315 355	315 355	375 400	475 475	530 500	236 236	335 355
450 000	23,6	250	280	355	475	530	500	400	300	530	400	280	236	250	315	450	530	200	280
	17	300	315	375	450	500	475	400	335	500	400	315	280	280	355	450	500	236	300
	11,8 8,5	335 355	335 355	375 375	425 425	475 450	450 425	400 400	355 355	450 450	400 400	355 355	315 335	315 335	375 375	425 425	475 450	236 236	315 315
560 000	23,6	236	250	315	425	500	475	355	265	500	375	265	212	224	300	425	530	170	265
	17 11,8	265 300	280 315	335 355	425 400	475 425	450 425	375 375	300 315	450 425	375 375	300 315	250 280	265 300	315 335	400 400	475 450	212 236	265 280
	8,5	315	335	355	400	425	400	375	335	425	375	335	315	315	355	400	425	236	300
710 000	17	236	250	315	400	425	400	335	265	425	355	265	224	236	300	375	450	180	250
	11,8 8,5	265 280	280 300	315 335	375 375	400 375	400 375	335 335	300 315	400 375	355 355	280 300	265 280	265 280	315 315	375 375	425 400	212 224	250 265
900 000	17	212	224	280	355	400	375	315	236	400	315	236	200	212	265	355	425	160	224
	11,8 8,5	250 265	250 265	300 300	355 335	375 355	375 355	315 315	265 280	375 355	315 315	265 280	236 250	236 265	280 300	355 335	400 375	180 200	224 236
1 120 000	17	190	200	265	335	400	355	280	224	375	300	212	180	190	236	335	400	132	200
	11,8	224	236	280	335	355	335	300	250	355	300	236	212	224	265	315	375	160	212
1 400 000	8,5 17	236 170	250 180	280 236	315 315	335 355	335 335	300 265	265 200	335 355	300 280	250 190	236 160	236 160	265 224	315 315	355 375	180 118	212 180
1 400 000	11,8	200	212	250	315	335	315	265	224	335	280	224	190	200	236	300	355	140	190
4 000 000	8,5	224	224	265	300	315	315	280	236	315	280	236	212	224	250	300	335	160	190
1 800 000	17 11,8	150 180	160 190	212 236	300 280	335 315	315 300	236 250	180 200	335 315	250 250	170 200	132 170	140 180	190 212	280 280	355 315	95 125	160 170
	8,5	200	212	236	280	300	280	250	212	300	250	212	190	200	224	280	300	140	170
2 240 000	17	212 132	224 140	236	265 280	280 300	280	250 224	224 160	280 315	250 236	224 150	212 118	212 125	236 170	265 265	280 335	150 80	180 140
0 000	11,8	160	170	212	265	300	280	236	180	300	236	180	150	160	200	265	315	106	150
	8,5 6	180 200	190 200	224 224	265 250	280 265	265 265	236 236	200 212	280 265	236 236	200 212	180 190	180 200	212 224	250 250	280 265	125 140	160 160
2 800 000	17	118	125	180	265	265	236	200	140	280	212	132	100	106	150	250	300	67	132
	11,8	150	150	190	250	280	265	212	170	280	224	160	140	140	180	250	280	90	140
	8,5 6	170 180	170 190	200 212	236 236	265 250	250 236	212 212	180 190	265 250	224 224	180 190	160 180	160 180	190 200	236 236	265 250	112 125	140 150
3 550 000	11,8	132	140	180	236	265	250	200	150	265	200	140	118	125	160	224	280	80	125
	8,5 6	150 160	160 170	190 190	224 212	250 236	236 224	200 200	160 180	250 236	200 200	160 170	140 160	150 160	180 180	224 212	250 236	95 106	125 132
									may	E20								may 226	may 275

max **530** max **236** max **375**

¹⁾ Une charge axiale peut agir en même temps que la charge radiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter. 2) Une charge radiale peut agir en même temps que la charge axiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter.

80.81

Page 19																			taille	80, 81
140 000 60	$\mathbf{n}_2 \cdot \mathbf{L}_h$	\mathbf{M}_2								F,	1)								F _a	2)
140 000 60									0"											
140 000 60					1		4	-4	7	1	P	4		mt	বা					
140 000 60					+	(4)		-	﴾₽	-	~ H	D)		170)					1
140 000 60					-				4	J	* 54			MA	4				-1	<u>.</u>
140 000 60					,		,				,			0,	-				\rightarrow	+
140 000 60						Δ									A				+	J
112 000 66	min⁻¹ · h	daN m	0	45	90	135	180	225	270	315	0	45	90	135	180	225	270	315		*
141 142 140	90 000																			
140 000	112 000																			
180 190																				
180 000	140 000																			
10																				
244 000 66 6	180 000																			
224 000																				
280 690 690 690 690 690 690 690 790 690 690 790 690	224 000			475	630		800		710	530		710			425	560	800	800	335	
280 000																				
28		20																		
355 000	280 000																			
28																				
450 600 600 600 600 670 670 670 630 680	355 000																			
450 000																				
28																				
Part	450 000																			
\$\begin{align*}		20	475	500	560	630	670	630	560	500	670	600	500	450	475	530	630	670	355	425
28	560 000																			
710 000	000 000	28	400	400	500	600	670	630	530	425	670	530	425	375	375	475	600	670	280	355
710 000																				
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	710 000										670								190	
900 000																				
28																				
1 120 100 28 280 300 375 425 500 560 530 450 4	900 000																			
1 120 000		20	355	375		500				375				335				560		300
1 400 000 28 250 265 355 400 475 530 500 425 355 500 425 355 315 315 355 475 530 212 280	4 400 000																			
1 400 000 28 250 265 355 450 530 500 375 280 530 400 280 236 250 315 450 530 160 236 20 300 315 355 450 475 450 400 315 280 280 355 425 500 190 250 1 800 000 28 224 236 315 425 500 450 355 250 475 355 280 290 280 280 400 500 132 212 250 1 800 000 28 224 236 315 425 500 450 355 250 475 355 280 250 250 315 400 500 132 212 250 1 800 000 28 224 236 315 425 500 450 355 280 450 250 315 425	1 120 000																			
20	4 400 000																			
14 315 335 375 425 450 400 335 450 400 335 450 400 335 315 315 355 425 475 212 250 1 800 000 28 224 236 315 425 500 450 355 250 475 355 250 200 212 280 400 500 132 212 20 265 280 335 400 450 425 355 280 450 355 280 250 250 250 315 400 475 160 224 14 280 300 335 400 425 400 355 315 425 375 315 280 280 280 280 335 400 425 190 224 240 000 315 355 375 400 400 335 280 425 375 315 300 315 335 375 400 200 240 <th< th=""><th>1 400 000</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	1 400 000																			
20																				
14 280 300 335 400 425 400 355 315 425 375 315 280 280 280 335 400 425 190 224 2 240 000 20 236 250 300 375 425 400 355 335 266 425 300 315 335 450 140 200 236 14 265 280 315 375 400 375 335 280 400 335 280 250 280 375 450 140 200 200 212 240 200 200 236 280 315 355 450 140 300 375 325 280 400 335 280 250 250 280 335 450 140 200 200 212 240 400 375 335 300 280 280 280 315 355 375 375 375 335 300 335 280 280 280 280 <t< th=""><th>1 800 000</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	1 800 000																			
2 240 000 20 14 265 236 280 250 315 315 375 375 400 375 400 375 375 335 335 385 375 265 300 375 385 425 380 385 385 425 380 385 385 425 385 385 385 425 385 385 385 425 385 385 385 425 385 385 385 425 385 385 385 425 385 385 385 425 385 385 385 425 385 385 385 425 385 385 385 426 385 385 385 385 426 385 385 385 385 426 385 385 385 385 426 385 385 385 385 385 426 385 385 385 385 385 426 385 385 385 385 385 385 385 385 385 385		14	280	300	335	400	425	400	355	315	425	375	315	280	280	335	400	425	190	224
14 265 280 315 375 400 375 335 280 400 335 280 250 265 300 375 400 170 212 2 800 000 20 212 224 280 355 400 375 300 236 400 315 236 200 212 265 355 425 125 180 14 236 250 300 355 375 355 315 255 375 315 266 236 236 280 335 375 150 190 10 265 265 300 335 355 355 315 255 375 315 266 236 236 280 335 375 150 190 10 265 265 300 335 355 355 315 280 355 315 280 250 265 280 335 355 160 190 3 550 265 265 300 335 <t< th=""><th>2 240 000</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>i</th></t<>	2 240 000																			i
2 800 000 20 212 224 280 355 400 375 300 236 400 315 236 236 200 212 265 355 425 425 125 180 14 236 250 300 335 355 375 355 355 315 255 375 315 280 265 265 280 250 265 280 236 280 335 375 150 190 190 200 250 335 355 355 355 315 280 212 375 280 212 170 180 236 335 400 106 160 190 106 160 3 550 000 14 212 224 265 315 355 335 335 335 335 335 335 335 33	2 240 000	14																		
14 236 250 300 355 375 355 315 255 375 315 265 236 236 280 335 375 150 190 10 265 265 300 335 355 355 315 280 355 315 280 250 265 280 335 355 160 190 3 550 000 20 190 200 250 335 375 355 280 212 375 280 212 170 180 236 335 400 106 160 14 212 224 265 315 355 335 280 236 356 212 170 180 236 335 400 106 160 14 212 224 265 315 355 335 280 236 356 300 236 212 212 250 315 355 125 170 10 236 250 280 300 335 3	0.000.000																			
3 550 000 20 190 200 250 335 355 355 355 280 315 280 250 250 265 280 335 355 160 190 3 550 000 20 190 200 250 335 375 355 280 212 375 280 212 170 180 236 335 400 106 160 14 212 224 265 315 355 335 280 236 355 300 236 212 212 250 315 355 125 170 10 236 250 280 300 335 315 280 250 335 300 236 212 212 250 315 355 125 170 10 236 250 280 300 335 315 280 250 335 300 236 236 236 265 315 335 140 170	2 800 000																			
14 212 224 265 315 355 335 280 236 355 300 236 212 212 250 315 355 125 170 10 236 250 280 300 335 315 280 250 335 300 250 236 236 265 315 335 140 170		10																		
10 236 250 280 300 335 315 280 250 335 300 250 236 236 265 315 335 140 170	3 550 000																			
max 800 max 355 max 560																				
										max	800								max 355	max 560

Rossi

2609-22.11 Serie A

¹⁾ Une charge axiale peut agir en même temps que la charge radiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter. 2) Une charge radiale peut agir en même temps que la charge axiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter.

taille 100

No. L																				100
112 100 100 112 150	$\mathbf{n}_2 \cdot \mathbf{L}_h$	\mathbf{M}_2								F,	1)								F _a	2) 12
112 100 100 112 150					-		0.	Š]	7								- [) † +
112 100 100 112 150						Δ														↓
112 880 800 1600 126																				<u> </u>
80 900 960 1120 1250 1250 1250 1250 1250 1250 125	90 000																			
80	112 000	80 56	900 1000	950 1000	1120 1120	1250 1250	1250 1250	1250 1250	1180 1180	1000 1060	1250 1250	1250 1250	950 1060	850 950	850 950	1060 1120	1250 1250	1250 1250	560 560	900 900
80	140 000	80 56	800 900	850 950	1000 1060	1250 1250	1250 1250	1250 1250	1120 1120	900 950	1250 1250	1120 1120	900 950	750 850	800 900	950 1000	1250 1250	1250 1250	560 560	850 900
80 630 670 860 1120 1250 1180 950 710 1260 680 710 170 680 680 1606 1250 500 670 170 400 800 710 170 800 1606 1180 560 710 800 800 800 800 800 1080 1180 1120 850 850 850 1120 1000 850 759 800 900 1000 1120 580 750 800 800 800 800 1080 1180 1120 850 670 1180 800 630 530 530 560 710 1000 1120 550 630 630 630 630 630 630 630 630 630 63	180 000	80 56	710 800	750 850	950 950	1180 1120	1250 1250	1250 1180	1000 1000	800 850	1250 1250	1060 1060	800 850	670 750	710 800	850 950	1180 1120	1250 1250	560 560	750 800
\$56 670 710 800 1000 1120 1080 900 750 1080 900 770 800 800 800 800 800 800 600	224 000	80 56	630 750	670 750	850 900	1120 1060	1250 1180	1180 1120	950 950	710 800	1250 1180	950 1000	710 800	600 710	630 710	800 850	1060 1060	1250 1180	500 560	670 710
\$66 \$60 \$630 750 \$950 \$1000 \$950 \$800 \$710 \$950 \$800 \$710 \$950 \$850 \$710 \$950 \$850 \$710 \$950 \$850 \$710 \$950 \$850 \$710 \$950 \$850 \$710 \$950 \$850 \$710 \$950 \$850 \$710 \$950 \$850 \$710 \$950 \$850 \$710 \$950 \$850 \$710 \$950 \$850 \$710 \$950 \$850 \$710 \$950 \$850 \$710 \$950 \$850 \$710 \$950 \$9		56 40	670	710	800	1000	1120	1060	900	750	1060	900	710	630	670	800	1000	1120	500	630
\$\frac{56}{40} 600 630 710 850 950 900 750 600 950 750 600 500 530 670 850 900 375 530 28 630 670 710 800 850 850 750 670 850 900 750 630 630 600 670 850 900 425 500 850 850 750 670 850 750 670 850 750 670 850 770 800 850 900 425 550 850 850 850 950 950 850 750 670 850 750 670 850 850 850 950 850 950 850 850 950 850 850 950 850 710 850 850 850 850 710 850 850 850 850 850 850 850 850 850 85		56 40	600 670	630 670	750 800	950 900	1000 950	950 950	800 800	670 710	1000 950	850 850	670 710	560 630	600 670	710 750	900 900	1060 1000	450 500	560 600
56 475 530 630 800 900 850 710 560 900 710 530 450 475 600 800 950 335 475 28 600 600 670 750 800 800 710 630 800 710 600 530 530 630 750 850 400 475 710 000 56 425 450 560 750 850 800 630 500 850 670 475 400 425 530 600 710 800 530 600 760 560 670 560 530 600 770 800 335 425 425 425 420 425 420 800 800 710 630 530 800 670 560 530 530 600 730 475 475 475 480 900 400 450	450 000	56 40	530 600	560 630	710 710	850 850	950 900	900 850	750 750	600 630	950 900	750 750	600 630	500 560	530 600	670 670	850 850	1000 900	375 425	530 530
710 000 56 40 500 500 280 280 280 300 400 425 500 450 500 530 560 600 750 710 710 500 500 500 600 850 750 710 750 600 500 500 500 850 500 500 750 600 750 600 750 600 750 750 600 750 600 750 <th>560 000</th> <th>56 40</th> <th>475 560</th> <th>530 560</th> <th>630 670</th> <th>800 800</th> <th>900 850</th> <th>850 800</th> <th>710 710</th> <th>560 600</th> <th>900 850</th> <th>710 710</th> <th>530 600</th> <th>450 530</th> <th>475 530</th> <th>600 630</th> <th>800 750</th> <th>950 850</th> <th>335 400</th> <th>475 475</th>	560 000	56 40	475 560	530 560	630 670	800 800	900 850	850 800	710 710	560 600	900 850	710 710	530 600	450 530	475 530	600 630	800 750	950 850	335 400	475 475
40		56 40 28	425 500	450 530	560 600	750 710	850 800	800 750	630 630	500 530	850 800	670 670	475 530	400 475	425 475	530 560	750 710	900 800	280 335	425 425
40 400 425 500 630 710 670 560 450 710 560 450 375 400 475 630 710 265 355 1 400 000 56 450 475 530 600 670 630 560 475 660 475 425 450 500 600 670 300 375 1 400 000 56 300 335 450 630 710 670 500 355 710 500 335 265 280 400 600 750 170 300 400 400 335 355 450 600 670 224 315 328 400 425 500 560 630 600 530 450 630 450 400 335 355 450 600 670 224 315 365 450 630 265 280 400 450 315 67		40 28	450 500	475 500	560 560	670 670	750 710	710 670	600 600	500 530	750 710	600 600	475 530	425 475	425 475	530 560	670 630	750 710	300 335	400 400
40 355 375 475 600 670 630 500 400 670 530 400 335 355 450 600 670 224 315 1 800 000 56 265 280 400 560 630 600 450 450 400 400 400 475 560 630 265 335 1 800 000 56 265 280 400 560 630 600 450 315 670 475 300 224 236 355 560 710 140 265 40 315 335 425 560 630 600 475 355 630 475 355 300 315 400 530 630 190 280 28 375 375 450 530 560 560 475 400 560 500 400 355 355 425 530 600		40 28	400 450	425 475	500 530	630 600	710 670	670 630	560 560	450 475	710 670	560 560	450 475	375 425	400 450	475 500	630 600	710 670	265 300	355 375
40 315 335 425 560 630 600 475 355 630 475 355 300 315 400 530 630 190 280 28 375 375 450 530 560 560 475 400 560 500 400 355 355 425 530 600 236 300 2 240 000 40 280 315 400 530 600 560 425 335 560 450 315 265 280 355 500 600 170 265 28 335 355 400 500 560 530 450 375 530 450 355 315 335 400 500 560 200 265 28 335 355 475 560 530 400 300 560 400 280 236 250 335 475 560 200 200 280 236 250 335 475 560 140		40 28	355 400	375 425	475 500	600 560	670 630	630 600	500 530	400 450	670 630	530 530	400 450	335 400	355 400	450 475	600 560	670 630	224 265	315 335
28 335 355 400 500 560 530 450 375 530 450 355 315 335 400 500 560 200 265 2 800 000 40 250 280 355 475 560 530 400 300 560 400 280 236 250 335 475 560 140 235 28 300 315 375 475 500 500 400 335 500 425 335 280 300 355 450 530 180 255 3 550 000 40 224 250 315 450 530 500 355 265 530 375 250 200 212 300 450 560 118 212 28 265 280 355 425 475 450 375 300 475 375 300 250 265 335		40 28	315 375	335 375	425 450	560 530	630 560	600 560	475 475	355 400	630 560	475 500	355 400	300 355	315 355	400 425	530 530	630 600	190 236	280 300
28 300 315 375 475 500 500 400 335 500 425 335 280 300 355 450 530 180 255 3 550 000 40 224 250 315 450 530 500 355 265 530 375 250 200 212 300 450 560 118 212 28 265 280 355 425 475 450 375 300 475 375 300 250 265 335 425 500 118 212 29 200 212 300 450 560 118 212 201 202 203 255 335 425 500 150 224	2 240 000																			
28 265 280 355 425 475 450 375 300 475 375 300 250 265 335 425 500 150 224	2 800 000																			
	3 550 000																			

max **1 250** max **560** max **900**

¹⁾ Une charge axiale peut agir en même temps que la charge radiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter. 2) Une charge radiale peut agir en même temps que la charge axiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter.

100 bis³⁾

																		• '	00 8.0
$\mathbf{n}_2 \cdot \mathbf{L}_h$	\mathbf{M}_2								F,	1)								F _a	2)
							Š			T									<u> </u>
					1									A				*	. →
min⁻¹ · h	daN m	0	45	90	135	180	225	270	315	0	45	90	135	180	225	270	315		
≤ 280 000	160	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	560	900
	112	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	560	900
355 000	80	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	560	900
	56	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	560	900
450 000	80	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	560	900
	56	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	560	900
560 000	80	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	560	900
	56	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	560	900
710 000	56	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	560	900
	40	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	560	900
900 000	56 40	1250 1250	560 560	900															
1 120 000	56	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	560	900
	40	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	560	900
	28	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	560	900
1 400 000	56	1180	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1180	1180	1250	1250	1250	560	850
	40	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	560	900
	28	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	560	900
1 800 000	56	1120	1180	1250	1250	1250	1250	1250	1180	1250	1250	1180	1120	1120	1250	1250	1250	560	800
	40	1180	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1180	1180	1250	1250	1250	560	850
	28	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	560	850
2 240 000	40	1120	1120	1250	1250	1250	1250	1250	1180	1250	1250	1180	1060	1120	1180	1250	1250	560	750
	28	1180	1180	1250	1250	1250	1250	1250	1180	1250	1250	1180	1120	1180	1250	1250	1250	560	800
2 800 000	40	1060	1060	1180	1250	1250	1250	1180	1060	1250	1180	1060	1000	1000	1120	1250	1250	560	710
	28	1060	1120	1180	1250	1250	1250	1180	1120	1250	1180	1120	1060	1060	1120	1250	1250	560	750
3 550 000	40	950	1000	1060	1180	1250	1180	1120	1000	1250	1120	1000	950	950	1060	1180	1250	560	670
	28	1000	1000	1060	1180	1180	1180	1120	1000	1180	1120	1000	1000	1000	1060	1180	1180	560	670
	20	1000	1060	1060	1120	1180	1120	1120	1060	1180	1120	1060	1000	1000	1060	1120	1180	560	710
									max	1 250								max 560	max 900

Rossi

¹⁾ Une charge axiale peut agir en même temps que la charge radiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter. 2) Une charge radiale peut agir en même temps que la charge axiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter. 3) Valeurs valables pour roulements à rouleaux coniques sur l'axe lent (chap. 5).

tailles 125, 126

F ₁ 2 F ₂ 2 F ₃ 2 F ₃																			14	25, 126
120 000 000 000	$\mathbf{n}_2 \cdot \mathbf{L}_h$	\mathbf{M}_2								F,	1)								Fa	2)
120 000 000 000								.4.	0"			-								
120 000 000 000					1		1	- < T	7	"]	- 1	#4		mt	70				٠-	
120 000 000 000					+	()		+	4		~ K	2)}		170)					1
120 000 000 000					-			LL:	44	J	* 5%			MA	4				1	i.J
120 000 000 000					,		,				7			0,	-4					+
120 000 000 000						1														
120 000 000 000	min⁻¹ · h	daN m	0	45	90	135	180	225	270	315	0	45	90	135	180	225	270	315	4	ŷ —
112 000 212 218 000 100 150		_	800								1800								630	1120
140 000			1060	1120	1400	1800	1800	1800	1600	1180	1800	1700	1180	950	1000	1320	1800	1800	800	1250
140 000 212 800 800 1180 1700 1800 1800 1400 1800 1800 1400 1500 1500 1500 1500 1500 1500 16	112 000																			
150	140 000	_																		
180 000 212 710 750 1000 1000 1000 1500 1500 1200 1200 1200 1000							1800			1120										
150	400.000	-																		
106 1000 1080 1220 1500 1600 1500 1320 1120 1320 1120 1000 1320 1320 1300 1300 1300 1300 1300 1400 1400 1700 800 10	180 000																			
224 000		106																		
106		-				1400		1500	1320	1180	1500		1180			1250	1400		800	1000
\$\frac{75}{280000} \$1000 \$1000 \$1080 \$1200 \$1400 \$1400 \$1250 \$1680 \$1000 \$1000 \$1200 \$1200 \$1500 \$800 \$800 \$1200 \$1600 \$1200 \$	224 000																			
106																				
755 900 950 1660 1250 120	280 000	150	710	750	1000	1320	1600	1500	1120	800	1500	1180	800	630	670	900	1320	1600	530	750
\$350 000 \$150 \$670 \$900 \$1220 \$1250 \$1320 \$125																				
350 000																				
106	350 000																			
450 000 150 500 600 1000 1120 1180 1180 180 600 600 1180 600 600 475 500 710 1120 1250 355 600 600 670 710 900 1120 1250 1180 950 750 1250 1000 750 630 630 630 800 1120 1320 475 630		106	750	800	950	1180	1320	1250	1060	850	1320	1060	800	710	710	900	1180	1400	560	710
## 450 000																				
106	450 000	_																		
\$\frac{50}{60} \begin{align*}{ c c c c c c c c c c c c c c c c c c c	100 000	106																		
\$\begin{array}{c c c c c c c c c c c c c c c c c c c																				
106	560 000	_																		
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	000 000																			
710 000 106 755 830 580 830 750 830 1000 850 1120 850 850 850 600 850 850 475 850 500 850 670 850 680 850 670 850																				
75	710 000																			
900 000 106 450 500 670 900 1060 1000 750 530 1060 750 530 425 450 600 900 1120 300 475 560 600 710 900 1000 950 750 630 630 630 630 630 750 850 950 800 670 800 600 670 600 850 950 950 900 800 670 600 600 710 850 950 900 670 475 1000 710 450 355 350 850 950 900 670 475 1000 710 450 355 375 530 850 150 425 425 425 425 425 425 425 425 425 425 450 425 425 425 475 450 425 475 450 425 475 450 <t< th=""><th>7 10 000</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	7 10 000																			
75 560 600 710 900 1000 950 750 630 1000 800 600 530 530 670 850 1000 375 500 1 120 000 1 400 450 650 850 950 900 670 475 1000 710 450 650 850 950 900 670 475 1000 710 450 355 375 530 850 1000 250 450		-	670	710	800	900	1000	950	850	750	1000	850	710	670	670	750	900	1000	475	560
1 120 106 400 450 660 850 950 900 800 670 900 800 670 600 600 710 850 950 425 500 1 120 106 400 450 660 850 950 900 670 475 1000 710 450 355 375 530 850 1060 250 425 75	900 000																			
75 500 530 670 850 950 900 710 560 950 750 560 475 500 630 800 950 315 450 37,5 600 630 670 800 850 850 710 630 880 750 600 530 560 600 900 375 450 450 455 475 450 475 450 475 450 475 450 475 450 475 450 475 800 850 800 630 425 900 670 400 315 335 475 750 1000 220 375 450 475 600 750 800 800 670 500 425 425 560 750 900 280 400 53 500 530 630 750 800 800 670 500 425 450 750 800																				
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	1 120 000		400	450	600	850	950	900	670	475	1000	710	450	355	375	530	850	1060	250	425
1400 000		1																		
1 400 000 106 355 400 560 800 850 800 630 425 900 670 400 315 335 475 750 1000 200 375 75 450 475 600 750 900 850 670 500 425 425 560 750 900 280 400 53 500 530 630 750 800 800 670 560 800 500 600 750 850 335 425 37,5 560 560 630 710 750 750 670 600 750 500 500 600 750 850 335 425 1 800 000 75 400 425 530 710 750 670 600 450 355 375 500 710 850 236 355 450 475 860 450 450 450 450<																				
53 500 530 630 750 800 800 670 560 800 670 560 800 670 560 800 670 560 500 500 600 750 850 335 425 1 800 000 75 400 425 530 710 850 750 600 450 800 630 450 355 375 500 710 850 236 355 53 450 475 560 710 750 630 500 750 630 500 450 450 560 670 800 236 375 500 530 600 670 710 710 630 530 710 630 530 710 630 530 710 630 530 500 500 670 800 220 315 375 500 530 670 710 670 560 400 750	1 400 000	_	355		560	800	850	800	630		900			315		475		1000	200	375
37,5 560 560 630 710 750 750 670 600 750 670 600 750 670 600 750 670 600 750 630 710 800 375 425 1 800 000 75 400 425 530 710 850 750 630 500 750 630 500 750 630 500 750 630 500 750 630 500 750 630 500 750 630 500 750 630 500 750 630 500 750 630 500 750 660 670 800 280 375 2 240 000 75 355 375 500 670 800 710 660 400 750 560 400 315 335 450 670 800 200 315 335 450 670 800 670 560 400																				
1 800 000 75 400 425 530 710 850 750 600 450 800 630 450 355 375 500 710 850 236 355 2 240 000 75 450 475 560 710 750 750 630 500 750 630 500 450 450 560 670 800 280 375 2 240 000 75 365 375 500 670 710 710 630 530 710 630 530 500 500 560 670 800 280 375 2 240 000 75 365 375 500 670 800 710 560 400 750 560 400 315 335 450 670 800 200 315 335 450 670 800 200 315 335 450 670 800 670 600 450																				
53 450 475 560 710 750 750 630 500 750 630 500 750 630 500 750 630 500 750 660 670 800 280 375 2 240 000 75 355 375 500 670 800 670 800 710 660 400 750 560 450 560 670 750 315 375 53 425 450 530 670 710 660 400 750 560 400 315 335 450 670 800 200 315 335 450 670 800 200 315 335 450 670 800 670 600 450 710 600 450 450 450 450 630 750 250 335 2 800 000 75 315 335 450 630 670 600 500 </th <th>1 800 000</th> <th>_</th> <th></th>	1 800 000	_																		
2 240 000 75 355 375 500 670 800 710 560 400 750 560 400 315 335 450 670 800 200 315 53 425 450 530 670 710 670 560 450 710 600 450 400 400 500 630 750 250 335 37,5 450 475 560 630 670 670 560 500 670 600 500 450 450 530 630 710 280 355 2 800 000 75 315 335 450 630 750 670 500 375 710 530 355 280 300 400 630 750 170 300 530 450 670 530 450 670 530 450 450 450 450 600 710 212 300 <		53	450	475	560	710	750	750	630	500	750	630	500	450	450	560	670	800	280	375
53 425 450 530 670 710 670 560 450 710 600 450 400 400 500 630 750 250 335 2 800 000 75 315 335 450 630 750 670 500 375 710 530 355 280 300 400 630 750 250 335 2 800 000 75 315 335 450 630 750 670 500 375 710 530 355 280 300 400 630 750 170 300 53 375 400 475 600 670 630 530 425 670 530 355 280 300 400 630 750 170 300 375 425 450 500 600 630 530 450 630 450 450 450 400 425 475 <th>2 240 000</th> <th>1</th> <th></th>	2 240 000	1																		
37,5 450 475 560 630 670 670 560 500 670 600 500 450 450 450 530 630 710 280 355 2 800 000 75 315 335 450 630 750 670 500 375 710 530 355 280 300 400 630 750 170 300 53 37,5 400 475 600 670 630 530 425 670 530 400 355 375 450 600 710 212 300 37,5 425 450 500 600 630 630 530 450 630 560 450 450 450 450 600 710 212 300 3 550 000 75 265 300 400 630 630 450 630 560 450 450 475 600 670	2 240 000																			
53 375 400 475 600 670 630 530 425 670 530 400 355 375 450 600 710 212 300 3 550 000 75 265 300 400 600 630 600 475 315 670 475 300 236 250 355 560 750 140 265 53 335 355 450 560 630 600 475 375 630 500 375 315 400 560 670 190 265 37,5 375 400 450 560 600 500 425 600 500 400 355 375 450 530 630 224 280																				
37,5 425 450 500 600 630 630 630 530 450 630 560 450 400 425 475 600 670 250 315 3550 000 75 265 300 400 600 630 600 475 315 670 475 300 236 250 355 560 750 140 265 53 335 355 450 560 630 600 475 375 630 500 375 315 315 400 560 670 190 265 37,5 375 400 450 560 600 560 500 425 600 500 400 355 375 450 530 630 224 280	2 800 000																			
3 550 000 75 265 300 400 600 630 600 475 315 670 475 300 236 250 355 560 750 140 265 53 335 355 450 560 630 600 475 375 630 500 375 315 315 400 560 670 190 265 37,5 375 400 450 560 600 560 500 425 600 500 400 355 375 450 530 630 224 280																				
53 335 355 450 560 630 600 475 375 630 500 375 315 315 400 560 670 190 265 37,5 375 400 450 560 600 560 500 425 600 500 400 355 375 450 530 630 224 280	3 550 000	-																		
		53	335	355	450	560	630	600	475	375	630	500	375	315	315	400	560	670	190	265
4 000		37,5	375	400	450	560	600	560	500	425		500	400	355	375	450	530	630	224	280

max 1 800 max 1 250

¹⁾ Une charge axiale peut agir en même temps que la charge radiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter. 2) Une charge radiale peut agir en même temps que la charge axiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter.

tailles 125 bis³⁾, 126 bis³⁾

																	1 2 5 i	015 ', 1 <i>1</i>	20 DIS
$\mathbf{n}_2 \cdot \mathbf{L}_h$	\mathbf{M}_2								F,	1)								Fa	2) a2
							.91	0"			-								
						1	-4	7	47	P	44		m	বা					and the same of th
				-	(4)	70.	-	D) E	-	o*— f ((Q		170	2)-					1
								44	J	+ 15X	14		M	2 5					±!
						3				Α,			O.	-4				-	+
					~									A					
	da Nili ini	0	45	90	135	180	225	270	315	0	45	90	135	180	225	270	315	+	+
min ⁻¹ · h ≤224 000	daN m	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	900	1400
<224 000	212	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	900	1400
280 000	150	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	900	1400
	106	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	900	1400
355 000	150	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	900	1400
450 000	106 150	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	900	1400
450 000	106	2000 2000	2000 2000	2000 2000	2000 2000	900 900	1400 1400												
560 000	150	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	900	1400
	106	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	900	1400
740.000	75	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	900	1400
710 000	150 106	2000 2000	2000 2000	2000 2000	2000 2000	900 900	1400 1400												
	75	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	900	1400
	53	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	900	1400
900 000	106	1900	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	1900	1900	2000	2000	2000	900	1400
	75 53	2000 2000	2000 2000	2000 2000	2000 2000	900 900	1400 1400												
1 120 000	106	1800	1900	2000	2000	2000	2000	2000	1900	2000	2000	1900	1800	1800	2000	2000	2000	900	1320
	75	1900	1900	2000	2000	2000	2000	2000	2000	2000	2000	2000	1900	1900	2000	2000	2000	900	1400
	53 37.5	2000 2000	2000 2000	2000	2000 2000	2000	2000 2000	2000	2000 2000	2000 2000	2000 2000	2000 2000	1900	2000 2000	2000 2000	2000	2000 2000	900	1400
1 400 000	106	1700	1700	2000 1900	2000	2000	2000	2000	1800	2000	2000	1800	2000 1600	1700	1800	2000	2000	900	1400
1 400 000	75	1700	1800	1900	2000	2000	2000	2000	1800	2000	2000	1800	1700	1700	1900	2000	2000	900	1320
	53	1800	1800	1900	2000	2000	2000	2000	1900	2000	2000	1900	1800	1800	1900	2000	2000	900	1320
4 000 000	37,5	1800	1900	2000	2000	2000	2000	2000	1900	2000	2000	1900	1800	1800	1900	2000	2000	900	1320
1 800 000	106 75	1500 1600	1600 1600	1800 1800	2000 1900	2000 2000	2000 2000	1800 1800	1600 1700	2000 2000	1800 1800	1600 1700	1500 1600	1500 1600	1700 1700	2000 1900	2000 2000	900 900	1180 1180
	53	1700	1700	1800	1900	2000	1900	1800	1700	2000	1800	1700	1600	1700	1800	1900	2000	900	1250
	37,5	1700	1700	1800	1900	1900	1900	1800	1700	1900	1800	1700	1700	1700	1800	1900	1900	900	1250
2 240 000	75 53	1600 1600	1600 1700	1800 1800	1900 1900	2000 1900	1900 1900	1800 1800	1600 1700	2000 1900	1800 1800	1600 1700	1500 1600	1600 1600	1700 1700	1900 1900	2000 1900	900 900	1120 1180
	37,5	1700	1700	1800	1800	1900	1900	1800	1700	1900	1800	1700	1700	1700	1800	1800	1900	900	1180
2 800 000	75	1500	1500	1600	1800	1900	1800	1700	1500	1900	1700	1500	1400	1500	1600	1800	1900	900	1060
	53	1500	1600	1700	1800	1800	1800	1700	1600	1800	1700	1600	1500	1500	1600	1800	1800	900	1060
0.550.000	37,5	1600	1600	1700	1700	1800	1700	1700	1600	1800	1700	1600	1600	1600	1600	1700	1800	900	1120
3 550 000	75 53	1320 1400	1400 1400	1500 1500	1700 1600	1800 1700	1700 1700	1600 1600	1400 1500	1800 1700	1600 1600	1400 1500	1320 1400	1320 1400	1500 1500	1700 1600	1800 1700	850 900	1000 1000
	37,5	1500	1500	1500	1600	1700	1600	1600	1500	1700	1600	1500	1400	1500	1500	1600	1700	900	1000
									may	2 000								max 900	max 1400
									IIIaX .	_ 000								max 300	

Rossi

2609-22.11 Serie A

¹⁾ Une charge axiale peut agir en même temps que la charge radiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter. 2) Une charge radiale peut agir en même temps que la charge axiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter. 3) Valeurs valables pour roulements à rouleaux coniques sur l'axe lent (chap. 5).

taille **160**

																			160
$\mathbf{n}_2 \cdot \mathbf{L}_h$	\mathbf{M}_2								F,	1)								F _a	2)
					. /		14	0		5	17								
					7	7	¥	77	1	. P	74		147	7					77
					9		1	T.	1	7.12			176	X				-	
						5	Lie	4	~	1	+			4				-	
					^_								0'						+
					Δζ													* ·	→
min ⁻¹ · h	daN m	0	45	90	135	180	225	270	315	0	45	90	135	180	225	270	315		
90 000	500 355	1000 1400	1120 1500	1700 2000	2650 2650	2500 2650	2360 2650	2120 2240	1250 1600	2650 2650	2120 2630	1120 1600	800 1250	900 1320	1400 1800	2650 2650	2650 2650	710 1000	1320 1500
112 000	355	1250	1320	1800	2650	2650	2650	2000	1500	2650	2120	1400	1060	1120	1600	2500	2650	850	1320
440.000	250	1500	1600	2000	2500	2650	2650	2120	1700	2650	2240	1600	1400	1500	1800	2500	2650	1120	1400
140 000	355 250	1060 1320	1180 1400	1600 1800	2360 2360	2650 2650	2650 2500	1900 2000	1250 1500	2650 2650	1900 2000	1180 1500	950 1250	1000 1320	1400 1700	2360 2240	2650 2650	750 950	1180 1250
	180	1500	1600	1900	2240	2500	2360	2000	1700	2500	2000	1700	1500	1500	1800	2240	2500	1120	1320
180 000	355 250	900 1180	1000 1250	1500 1600	2240 2120	2360 2500	2240 2240	1700 1800	1120 1320	2650 2360	1800 1800	1000 1320	750 1060	850 1120	1250 1500	2120 2120	2650 2500	600 800	1060 1120
	180	1400	1400	1700	2120	2240	2120	1800	1500	2240	1900	1500	1320	1320	1600	2000	2360	950	1180
224 000	125 355	1500	1600	1800	2000	2120	2120	1800	1600	2120	1900	1600	1500	1500	1700	2000	2240	1060	1250
224 000	250	800 1060	900 1120	1320 1500	2120 2000	2000 2360	1800 2120	1600 1700	950 1250	2240 2240	1600 1700	900 1180	630 950	710 1000	1060 1320	2000 2000	2500 2360	475 710	950 1000
	180 125	1250 1400	1320 1400	1600 1600	1900	2120	2000 1900	1700 1700	1400	2120 2000	1700 1700	1320 1500	1180 1320	1180	1500 1600	1900 1900	2240 2120	850 950	1060 1120
280 000	250	950	1000	1320	1900	2000	2000	1500	1500 1120	2120	1600	1060	850	1400 900	1250	1800	2240	600	900
_00000	180	1120	1180	1500	1800	2000	1900	1600	1250	2000	1600	1250	1060	1060	1320	1800	2120	750	950
	125 90	1250 1320	1320 1400	1500 1500	1800 1700	1900 1800	1800 1800	1600 1600	1320 1400	1900 1800	1600 1600	1320 1400	1180 1320	1250 1320	1500 1500	1700 1700	1900 1800	850 950	1000 1060
355 000	250	800	900	1250	1800	2120	1900	1400	1000	2000	1400	900	710	750	1060	1700	2120	500	800
	180 125	1000 1120	1120 1180	1320 1400	1700 1600	1900 1800	1800 1700	1400 1500	1120 1250	1900 1800	1500 1500	1120 1250	900 1060	950 1120	1250 1320	1700 1600	2000 1800	630 750	850 900
	90	1250	1250	1400	1600	1700	1600	1500	1320	1700	1500	1320	1180	1180	1400	1600	1700	850	950
450 000	250	710	800	1120	1600	1900	1700	1250	850	1900	1320	800	600	630	950	1600	2120	400	710
	180 125	900 1000	950 1060	1180 1250	1600 1500	1800 1700	1700 1600	1320 1320	1000 1120	1800 1700	1400 1400	1000 1120	800 1000	850 1000	1120 1180	1500 1500	1900 1700	560 670	800 800
	90	1120	1120	1320	1500	1600	1500	1320	1180	1600	1400	1180	1060	1120	1250	1500	1600	710	850
560 000	250 180	600 800	670 850	1000 1120	1500 1500	1600 1700	1500 1600	1180 1250	750 900	1700 1700	1180 1250	670 900	500 710	530 750	850 1000	1500 1400	1900 1800	335 475	670 710
	125	900	950	1180	1400	1600	1500	1250	1000	1600	1250	1000	900	900	1120	1400	1600	600	750
710 000	90	1000 500	1060	1180	1400	1500	1400	1250	1060	1500	1250	1060	1000	1000	1180	1400	1500	670	750 600
710 000	180	710	560 750	900 1000	1400 1400	1250 1600	1180 1500	1060 1120	670 800	1500 1600	1120 1180	560 800	400 630	450 650	710 900	1320 1320	1600 1700	265 400	630
	125 90	850 900	900 950	1060 1120	1320 1250	1500 1400	1400 1320	1120 1180	950 1000	1500 1400	1180 1180	900 1000	800 900	800 900	1000 1060	1320 1250	1500 1400	500 560	670 670
900 000	180	600	670	900	1250	1500	1400	1000	710	1500	1060	670	530	560	800	1250	1600	335	560
	125	750	800	950	1250	1400	1320	1060	850	1400	1060	800	710	710	1000	1180	1400	425	600
1 120 000	90	850 530	850 600	1000	1180 1180	1320 1400	1250 1320	1060 950	900	1320 1400	1120 950	900	800 450	850 500	950 710	1180 1180	1320 1500	500 280	600 500
1 120 000	125	670	710	900	1180	1320	1250	1000	750	1320	1000	750	630	670	850	1120	1320	375	530
	90	750 850	800 850	950 950	1120 1120	1250 1120	1180 1120	1000 1000	850 900	1180 1120	1000 1000	850 900	710 800	750 850	900 950	1120 1060	1250 1180	450 500	560 560
1 400 000	180	450	500	750	1120	1180	1120	850	560	1320	900	500	375	425	630	1060	1400	224	450
	125 90	600	630	800	1060	1250	1180	900	670	1250	950	670	560	600	750	1060	1250	335	475
	63	670 750	710 800	850 900	1060 1000	1120 1060	1120 1060	900 900	750 800	1120 1060	950 950	750 800	670 750	670 750	800 850	1000 1000	1180 1120	400 450	500 530
1 800 000	125	530	560	750	1000	1180	1060	800	600	1120	850	600	475	500	670	1000	1180	265	425
	90 63	600 670	710 710	800 800	950 950	1060 1000	1000 950	850 850	670 750	1060 1000	850 850	670 750	600 670	600 670	750 800	950 950	1120 1000	335 375	450 475
2 240 000	125	475	500	670	950	1120	1000	750	560	1060	800	530	425	450	600	900	1120	236	400
	90 63	560 630	600 670	710 750	900 900	1000 950	950 900	800 800	630 670	1000 950	800 800	600 670	530 600	530 630	670 710	900 850	1060 950	300 335	400 425
2 800 000	125	400	450	600	900	1060	950	710	475	1000	710	450	355	375	530	850	1060	190	355
	90	500	530	670	850	950	900	710	560	950	750	560	475	475	630	850	1000	250	375
3 550 000	63 125	560 355	600 400	710 560	800	900 950	850 850	750 630	630 425	900 950	750 670	600 400	530 300	560 335	670 475	800	900	300 150	375 315
0 300 000	90	450	475	600	800	900	850	670	500	900	670	500	400	425	560	800	950	212	335
	63	500	530	630	750	850	800	670	560	850	710	560	500	500	600	750	850	265	335

max **2 650** max **1 180** max **1 900**

¹⁾ Une charge axiale peut agir en même temps que la charge radiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter. 2) Une charge radiale peut agir en même temps que la charge axiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter.

aille 161

																			161
$\mathbf{n}_2 \cdot \mathbf{L}_h$	\mathbf{M}_2								F,	1)								F _a	2)
								0*											
					1	· ·	- ⟨n		νī	D	13		Description	¬ (π)					
				_		70.	7	(B)	4 .	r- [((6		140	2)					
						-	D.	4	j	1 1	44		GQ.	28 ₅					
					444	5				\rightarrow			į	. 4					·
						_							·						
					\triangle													+	→
min ⁻¹ · h	daN m	0	45	90	135	180	225	270	315	0	45	90	135	180	225	270	315		
≤180 000	500 355	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	1320 1320	2120 2120								
224 000	355	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	1320	2120
224 000	250	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	1320	2120
280 000	355	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	1320	2120
	250	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	1320	2120
355 000	355 250	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	1320	2120
450 000	355	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	1320 1320	2120
430 000	250	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	1320	2120
560 000	250	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	1320	2120
	180	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	1320	2120
740,000	125	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	1320	2120
710 000	250 180	2650 2800	2800 2800	3000 3000	3000 3000	3000 3000	3000 3000	3000 3000	2800 3000	3000 3000	3000 3000	2800 2800	2500 2800	2650 2800	3000 3000	3000 3000	3000 3000	1320 1320	2000 2000
	125	2800	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	2800	2800	3000	3000	3000	1320	2120
	90	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	1320	2120
900 000	250	2360	2500	2800	3000	3000	3000	3000	2500	3000	3000	2500	2360	2360	2800	3000	3000	1320	1800
	180 125	2500 2650	2650 2800	2800 3000	3000 3000	3000 3000	3000 3000	3000 3000	2650 2800	3000 3000	3000 3000	2650 2800	2500 2650	2500 2650	2800 2800	3000 3000	3000 3000	1320 1320	1900 1900
	90	2800	2800	3000	3000	3000	3000	3000	2800	3000	3000	2800	2800	2800	2800	3000	3000	1320	1900
1 120 000	180	2360	2500	2650	3000	3000	3000	2800	2500	3000	2800	2500	2360	2360	2650	3000	3000	1320	1700
	125	2500	2500	2800	3000	3000	3000	2800	2650	3000	2800	2650	2500	2500	2650	3000	3000	1320	1800
	90	2500 2650	2650 2650	2800 2800	2800 2800	3000 3000	3000 2800	2800 2800	2650 2650	3000 2800	2800 2800	2650 2650	2500 2650	2500 2650	2650 2800	2800 2800	3000 3000	1320 1320	1800 1800
1 400 000	180	2240	2240	2500	2800	3000	2800	2650	2360	3000	2650	2360	2120	2240	2500	2800	3000	1320	1600
1 400 000	125	2360	2360	2500	2800	2800	2800	2650	2360	2800	2650	2360	2240	2360	2500	2800	3000	1320	1700
	90	2360	2500	2500	2650	2800	2800	2650	2500	2800	2650	2500	2360	2360	2500	2650	2800	1320	1700
	63	2500	2500	2500	2650	2650	2650	2650	2500	2800	2650	2500	2360	2500	2500	2650	2800	1320	1700
1 800 000	125 90	2240 2360	2360 2360	2500 2500	2650 2650	2800 2800	2800 2650	2500 2500	2360 2360	2800 2800	2650 2650	2360 2360	2240 2240	2240 2360	2500 2500	2650 2650	2800 2800	1320 1320	1500 1600
	63	2360	2500	2500	2650	2650	2650	2500	2500	2650	2650	2500	2360	2360	2500	2650	2650	1320	1600
2 240 000	125	2120	2120	2360	2500	2650	2650	2360	2240	2650	2500	2120	2000	2120	2240	2500	2650	1250	1400
	90	2120	2240	2360	2500	2650	2500	2360	2240	2650	2360	2240	2120	2120	2360	2500	2650	1320	1500
	63	2240	2240	2360	2500	2500	2500	2360	2240	2500	2360	2240	2240	2240	2360	2500	2500	1320	1500
2 800 000	125 90	1900 2000	2000 2120	2120 2240	2360 2360	2500 2500	2500 2360	2240 2240	2000 2120	2500 2500	2240 2360	2000 2120	1900 2000	1900 2000	2120 2120	2360 2360	2500 2500	1180 1250	1320 1400
	63	2120	2120	2240	2360	2360	2360	2240	2120	2360	2240	2120	2000	2120	2240	2360	2360	1320	1400
3 550 000	125	1800	1800	2000	2240	2360	2240	2120	1900	2360	2120	1900	1700	1800	2000	2240	2360	1060	1250
	90	1900	1900	2000	2240	2240	2240	2120	1900	2240	2120	1900	1800	1900	2000	2240	2360	1180	1250
	63	1900	2000	2000	2120	2240	2240	2120	2000	2240	2120	2000	1900	1900	2000	2120	2240	1180	1320

ax **3 000** max **1 320** max **2 120**

2609-22.11

Serie A

¹⁾ Une charge axiale peut agir en même temps que la charge radiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter. 2) Une charge radiale peut agir en même temps que la charge axiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter.

taille **200**

																			200
$\mathbf{n}_2 \cdot \mathbf{L}_h$	\mathbf{M}_2								F,	1)								F _a	2)
						4	.4.	0,			10								
						1	4	#	1	H	#		M	V				· ·	-
				1	(4)		1	(P)	1 '	オブ			140	*				-	-
				-			Lie	4	d	15	+		Dry Car	4				-	XJ
													o,						+
					1									_				* ,	. →
min ⁻¹ · h	daN m	0	45	90	135	180	225	270	315	0	45	90	135	180	225	270	315		
140 000	1000	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	2000	3150
180 000	710	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	2000	3150
100 000	1000 710	4500 4500	2000 2000	3150 3150															
	500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	2000	3150
224 000	710	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	2000	3150
	500 355	4500 4500	2000 2000	3150 3150															
280 000	710	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4250	4500	4500	4500	4500	2000	3150
	500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	2000	3150
	355 250	4500 4500	2000 2000	3150 3150															
	180	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	2000	3150
355 000	500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4250	4500	4500	4500	4500	2000	3150
	355 250	4500 4500	2000 2000	3150 3150															
	180	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	2000	3150
450 000	500	4000	4250	4500	4500	4500	4500	4500	4500	4500	4500	4250	4000	4000	4500	4500	4500	2000	3150
	355 250	4250 4500	4500 4500	4250 4500	4250 4500	4500 4500	4500 4500	4500 4500	2000 2000	3150 3150									
	180	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500	2000	3150
560 000	500 355	3750	4000	4500	4500	4500	4500	4500	4000	4500	4500	4000	3550	3750	4250	4500	4500	2000	3000
	250	4000 4250	4250 4250	4500 4500	4500 4500	4500 4500	4500 4500	4500 4500	4250 4250	4500 4500	4500 4500	4250 4250	4000 4000	4000 4250	4500 4500	4500 4500	4500 4500	2000 2000	3000 3150
	180	4250	4250	4500	4500	4500	4500	4500	4500	4500	4500	4250	4250	4250	4500	4500	4500	2000	3150
710 000	125 500	4500 3350	4500 3550	4500 4250	4500 4500	4500 4500	4500 4500	4500 4250	4500 3750	4500 4500	4500	4500 3550	4250 3350	4500 3350	4500 4000	4500	4500 4500	2000	3150 2650
7 10 000	355	4000	3750	4250	4500	4500	4500	4250	3750	4500	4250 4250	3750	3550	3750	4000	4500 4500	4500	2000 2000	2800
	250 180	4000	4000	4250	4500	4500	4500	4250	4000	4500	4250	4000	3750	3750	4250	4500	4500	2000	3000 3000
	125	4000 4000	4000 4250	4250 4250	4500 4500	4500 4500	4500 4500	4250 4250	4000 4250	4500 4500	4250 4250	4000 4250	4000 4000	4000 4000	4250 4250	4500 4500	4500 4500	2000 2000	3000
900 000	355	3350	3550	4000	4250	4500	4500	4000	3550	4500	4000	3550	3350	3350	3750	4250	4500	2000	2650
	250 180	3550 3750	3750 3750	4000 4000	4250 4250	4500 4250	4250 4250	4000 4000	3750 3750	4500 4250	4000 4000	3750 3750	3550 3550	3550 3750	4000 4000	4250 4250	4500 4250	2000 2000	2650 2800
	125	3750	3750	4000	4250	4250	4250	4000	3750	4250	4000	3750	3750	3750	4000	4250	4250	2000	2800
1 120 000	355	3150	3350	3750	4000	4250	4250	3750	3350	4250	3750	3350	3000	3150	3550	4000	4500	2000	2500
	250 180	3350 3350	3350 3550	3750 3750	4000 4000	4250 4000	4000 4000	3750 3750	3350 3550	4250 4000	3750 3750	3350 3550	3150 3350	3350 3350	3550 3550	4000 4000	4250 4000	2000 2000	2500 2500
	125	3550	3550	3750	4000	4000	4000	3750	3550	4000	3750	3550	3550	3550	3750	4000	4000	2000	2650
1 400 000	355	3000	3000	3350	4000	4000	4000	3550	3000	4000	3550	3000	2800	2800	3350	3750	4250	1900	2240
	250 180	3000 3150	3150 3350	3550 3550	3750 3750	4000 3750	3750 3750	3550 3550	3150 3350	4000 3750	3550 3550	3150 3350	3000 3150	3000 3150	3350 3350	3750 3750	4000 3750	2000 2000	2360 2360
	125	3350	3350	3550	3550	3750	3550	3550	3350	3750	3550	3350	3150	3350	3350	3550	3750	2000	2360
1 800 000	355	2650	2800	3150	3550	3750	3550	3150	2800	3750	3350	2800	2500	2650	3000	3550	4000	1700	2120
	250 180	2800 3000	3000 3000	3150 3150	3550 3350	3550 3550	3550 3350	3150 3150	3000 3000	3550 3550	3350 3350	3000 3000	2800 2800	2800 3000	3150 3150	3550 3350	3750 3550	1900 2000	2120 2240
	125	3000	3000	3150	3350	3350	3350	3150	3150	3350	3350	3000	3000	3000	3150	3350	3550	2000	2240
2 240 000	250 180	2650	2650	3000	3350	3350	3350	3000	2800	3350	3000	2650	2500	2650	3000	3350	3550	1800	2000
	125	2800 2800	2800 2800	3000 3000	3150 3150	3350 3150	3150 3150	3000 3000	2800 2800	3350 3150	3000 3000	2800 2800	2650 2800	2650 2800	3000 3000	3150 3150	3350 3350	1900 2000	2000 2120
2 800 000	250	2360	2500	2800	3150	3350	3150	2800	2500	3150	2800	2500	2360	2360	2650	3150	3350	1600	1900
	180 125	2500 2650	2650 2650	2800 2800	3000 3000	3150 3000	3000 3000	2800 2800	2650 2650	3150 3000	2800 2800	2650 2650	2500 2650	2500 2650	2800 2800	3000 3000	3150 3000	1700 1800	1900 1900
3 550 000	250	2240	2360	2650	3000	3000	3000	2650	2360	3000	2650	2360	2120	2240	2360	3000	3150	1500	1700
2 2 2 2 2 2 2 2	180	2360	2360	2650	2800	3000	2800	2650	2360	3000	2650	2360	2240	2360	2500	2800	3000	1600	1800
	125	2360	2500	2650	2800	2800	2800	2650	2500	2800	2650	2500	2360	2360	2650	2800	3000	1700	1800

max **4 500** max **3 150**

¹⁾ Une charge axiale peut agir en même temps que la charge radiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter. 2) Une charge radiale peut agir en même temps que la charge axiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter.

taille **250**

																			230
$\mathbf{n}_2 \cdot \mathbf{L}_h$	\mathbf{M}_2								F	1)								F _a	2)
				-		0.	1] '									- [<u> </u>
					~								_	_					
min⁻¹ · h	daN m	0	45	90	135	180	225	270	315	0	45	90	135	180	225	270	315	+	·
180 000	1900	5000	5600	6300	6300	6300	6300	6300	6000	6300	6300	5600	4500	4750	6300	6300	6300	1400	3000
224 000	1320 1320	6000 5300	6300	6300	6300	6300 6300	6300	6300	6300	6300	6300	6300	5600	5300	6300	6300	6300	2000 1800	3000 2800
	950	6000	6300	6300	6300	6300	6300	6300	6300	6300	6300	6300	6000	6000	6300	6300	6300	2240	3000
280 000	1320 950	5000 5600	5300 6000	6300 6300	6300 6300	6300 6300	6300 6300	6300 6300	5600 6000	6300 6300	6300 6300	5300 6000	4500 5300	4750 5600	6000 6300	6300 6300	6300 6300	1600 2000	2650 2800
	670	6000	6300	6300	6300	6300	6300	6300	6300	6300	6300	6300	6000	6000	6300	6300	6300	2320	2800
355 000	950 670	5000 5600	5300 5600	6300 6300	6300 6300	6300 6300	6300 6300	6300 6300	5600 6000	6300 6300	6300 6300	5300 6000	4750 5300	5000 6000	6000 6300	6300 6300	6300 6300	1800 2120	2500 2650
	475	6000	6000	6300	6300	6300	6300	6300	6000	6300	6300	6000	5600	6000	6300	6300	6300	2360	2650
450 000	950 670	4500 5000	4750 5300	5600 6000	6300 6300	6300 6300	6300 6300	6300 6300	5000 5300	6300 6300	6300 6300	5000 5300	4250 4750	4500 5000	5600 6000	6300 6300	6300 6300	1600 1900	2360 2500
	475	5300	5600	6000	6300	6300	6300	6000	5600	6300	6300	5600	5300	5300	6000	6300	6300	2120	2500
560 000	950 670	4250 4750	4500 4750	5300 5600	6300 6300	6300 6300	6300 6300	5600 5600	4750 5000	6300 6300	6000 6000	4500 5000	4000 4500	4250 4500	5000 5300	6300 6300	6300 6300	1500 1700	2240 2240
	475 335	5000 5300	5000 5300	5600 5600	6000 6000	6300 6300	6300 6000	5600 5600	5300 5300	6300 6300	6000 6000	5300 5300	4750 5000	5000 5300	5600 5600	6000 6000	6300 6300	1900 2120	2360 2360
710 000	950	3750	4000	5000	6000	6300	6300	5300	4250	6300	5300	4250	3550	3750	4750	6000	6300	1250	2000
	670 475	4250 4500	4500 4750	5000 5300	6000 6000	6300 6000	6000 6000	5300 5300	4500 4750	6300 6000	5600 5300	4500 4750	4000 4500	4250 4500	5000 5000	6000 5600	6300 6300	1600 1800	2120 2120
	335	4750	5000	5300	5600	6000	6000	5300	5000	6000	5300	5000	4750	4750	5300	5600	6000	1900	2240
900 000	670 475	4000 4250	4000 4250	4750 4750	5600 5300	6000 5600	6000 5600	5000 5000	4250 4500	6000 5600	5000 5000	4250 4500	3750 4000	3750 4250	4500 4750	5600 5300	6300 6000	1400 1600	1900 2000
	335	4500	4500	4750	5300	5600	5300	5000	4500	5600	5000	4500	4250	4500	4750	5300	5600	1800	2000
1 120 000	670 475	3550 4000	3750 4000	4500 4500	5300 5000	5600 5300	5300 5300	4750 4750	4000 4250	5600 5300	4750 4750	3750 4000	3350 3750	3550 4000	4250 4250	5300 5000	6000 5600	1250 1500	1800 1900
	335	4000	4250	4500	5000	5300	5000	4750	4250	5300	4750	4250	4000	4000	4500	5000	5300	1600	1900
1 400 000	670 475	3350 3550	3550 3750	4000 4250	5000 4750	5300 5000	5000 5000	4250 4250	3550 3750	5300 5000	4500 4500	3550 3750	3150 3550	3150 3550	4000 4000	4750 4750	5600 5300	1180 1400	1700 1700
	335	3750	4000	4250	4750	4750	4750	4250	4000	4750	4500	4000	3750	3750	4250	4750	5000	1500	1800
1 800 000	670 475	3000 3350	3150 3350	3750 4000	4500 4500	5000 4750	4750 4500	4000 4000	3350 3550	5000 4750	4000 4250	3150 3550	2800 3150	3000 3350	3550 3750	4500 4500	5300 5000	1000 1250	1500 1600
	335	3550	3550	4000	4250	4500	4500	4000	3750	4500	4250	3750	3350	3550	3750	4250	4750	1400	1600
2 240 000	475 335	3000 3150	3150 3350	3550 3750	4250 4000	4500 4250	4250 4250	3750 3750	3350 3350	4500 4250	4000 3750	3150 3350	3000 3150	3000 3150	3550 3550	4250 4000	4750 4500	1120 1250	1500 1500

max **6 300** max **4 500**

Valeurs valables pour arbre lent intégral (voir chap. 5).

250 bis

	180 000	1900	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	3150	5000
	224 000	1320	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	3150	5000
	280 000	1320	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	3150	5000
	355 000	950	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	3150	5000
	450 000	950	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	3150	5000
	560 000	950	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	7100	6700	7100	7100	7100	7100	3150	4500
	710 000	950 670	6700 7100	7100 7100	6300 7100	6700 7100	7100 7100	7100 7100	7100 7100	3150 3150	4250 4500									
ľ	900 000	950 670	6700 6700	6700 7100	7100 7100	7100 7100	7100 7100	7100 7100	7100 7100	6700 7100	7100 7100	7100 7100	6700 7100	6300 6700	6700 6700	7100 7100	7100 7100	7100 7100	3150 3150	4000 4250
	1 120 000	670 475 335	6000 6300 6700	6300 6700 6700	7100 7100 7100	7100 7100 7100	7100 7100 7100	7100 7100 7100	7100 7100 7100	6300 6700 6700	7100 7100 7100	7100 7100 7100	6300 6700 6700	6000 6300 6700	6000 6300 6700	6700 6700 7100	7100 7100 7100	7100 7100 7100	3000 3150 3150	3750 4000 4000
	1 400 000	670 475 335	5600 6000 6000	6000 6000 6300	6300 6700 6700	7100 7100 7100	7100 7100 7100	7100 7100 7100	6700 6700 6700	6000 6000 6300	7100 7100 7100	6700 6700 6700	6000 6000 6300	5300 6000 6000	5600 6000 6000	6300 6300 6300	7100 7100 7100	7100 7100 7100	2800 3150 3150	3550 3550 3750
	1 800 000	670 475 335	5000 5300 5600	5300 5600 5600	6000 6000 6000	6700 6700 6300	7100 6700 6700	6700 6700 6700	6000 6000 6000	5300 5600 6000	7100 6700 6700	6300 6300 6300	5300 5600 6000	5000 5300 5600	5000 5300 5600	6000 6000 6000	6700 6700 6300	7100 7100 6700	2650 3000 3150	3150 3350 3350
ľ	2 240 000	475 335	5000 5300	5300 5300	5600 5600	6300 6000	6300 6300	6300 6000	5600 5600	5300 5300	6300 6300	6000 6000	5300 5300	5000 5300	5000 5300	5600 5600	6000 6000	6700 6300	2650 3000	3150 3150

max 7 100

max3 150 max5 000

¹⁾ Une charge axiale peut agir en même temps que la charge radiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter. 2) Une charge radiale peut agir en même temps que la charge axiale, jusqu'à 0,2 fois la valeur indiquée au tableau. Pour toutes valeurs supérieures, nous consulter.

Engrenage à vis

Nombre de dents z_2 de la roue à vis et z_1 de la vis sans fin, module axiale m_s , inclinaison de l'hélice moyenne γ_m , rendement statique η_s , et moment d'inertie J_1 de l'engrenage à vis pour réducteurs et motoréducteurs **R V, R IV, MR V, MR IV, MR 2IV**.

Pour les réducteurs et les motoréducteurs **R IV**, **MR IV** et **MR 2IV** le moment d'inertie (moteur exclu) sur l'axe rapide est celui sur la vis sans fin divisé par le carré du rapport d'engrenage de l'engrenage cylindrique.

						Taille ré	ducteur				
i		32	40	50	63, 64	80, 81	100	125, 126	160, 161	200	250
7	$egin{array}{c} z_{\scriptscriptstyle 2}/z_{\scriptscriptstyle 1} \ m_{\scriptscriptstyle imes} \ oldsymbol{\gamma}_{\scriptscriptstyle imes} \ oldsymbol{\gamma}_{\scriptscriptstyle imes} \ oldsymbol{\eta}_{\scriptscriptstyle ext{s}} \end{array}$	21 /3 2,2 22° 29' 0,71	21 /3 2,8 22° 29' 0,71	21 /3 3,4 22° 35' 0,71	28/4 3,5 28° 35' 0,74	28/4 4,5 28° 30' 0,74	_	_	_	_	_
10	$egin{array}{c} Z_2/Z_1 \ m_x \ oldsymbol{\gamma}_m \ oldsymbol{\eta}_s \end{array}$	20/2 2,3 15° 10' 0,65	20/2 2,8 15° 10' 0,65	20/2 3,5 15° 7' 0,65	30/3 3,3 19° 52' 0,69	30/3 4,2 20° 28' 0,7	30/3 5,3 21° 20' 0,7	30/3 6,6 21° 53' 0,7	30/3 8,6 23° 1' 0,72	_	_
13	$egin{array}{c} Z_2/Z_1 & & & & \ m_{_{ m x}} & & & \ oldsymbol{\gamma}_{_{ m m}} & & & \ oldsymbol{\eta}_{_{ m s}} & & & \end{array}$	26/2 1,8 13° 28' 0,62	26/2 2,3 13° 14' 0,62	26/2 2,9 13° 36' 0,63	26/2 3,7 14° 23' 0,64	26/2 4,7 14° 48' 0,64	26/2 5,9 15° 24' 0,65	39/3 5,2 18° 48' 0,68	39/3 6,8 19° 52' 0,69	39/3 8,5 20° 38' 0,7	_
16	$egin{array}{c} z_2/z_1 & & & \\ m_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}$	32/2 1,5 11° 52' 0,6	32/2 1,9 11° 53' 0,6	32/2 2,4 12° 4' 0,6	32/2 3,1 12° 47' 0,61	32/2 3,9 13° 14' 0,62	32/2 4,9 13° 47' 0,63	32/2 6,2 14° 7' 0,63	32/2 8 14° 52' 0,64	48/3 7,1 19° 4' 0,68	48/3 9 20° 21' 0,69
20	$egin{array}{c} Z_2/Z_1 & & & & \\ m_{_{_{ m X}}} & & & & \\ oldsymbol{\gamma}_{_{ m m}} & & & & \\ oldsymbol{\eta}_{_{ m s}} & & & & \end{array}$	20/1 2,3 7° 41' 0,5	20/1 2,8 7° 40' 0,5	20/1 3,5 7° 46' 0,5	40/2 2,5 11° 46' 0,6	40/2 3,2 12° 1' 0,6	40/2 4,1 12° 29' 0,61	40/2 5,1 12° 24' 0,61	40/2 6,6 13° 6' 0,62	40/2 8,3 13° 36' 0,63	40/2 10,4 14° 3' 0,63
25	$egin{array}{c} z_{\scriptscriptstyle 2}/z_{\scriptscriptstyle 1} \ m_{_{\scriptscriptstyle ext{x}}} \ oldsymbol{\gamma}_{\scriptscriptstyle ext{m}} \ oldsymbol{\eta}_{\scriptscriptstyle ext{s}} \end{array}$	25/1 1,9 6° 55' 0,48	25/1 2,4 6° 52' 0,48	25/1 3 6° 58' 0,48	25/1 3,8 7° 21' 0,5	25/1 4,8 7° 34' 0,5	25/1 6,1 7° 53' 0,51	50/2 4,2 11° 33' 0,59	50/2 5,4 11° 49' 0,6	50/2 6,8 12° 28' 0,61	50/2 8,6 13° 18' 0,62
32	$egin{array}{c} Z_2/Z_1 \ m_{_{_{ m X}}} \ oldsymbol{\gamma}_{_{ m m}} \ oldsymbol{\eta}_{_{ m s}} \end{array}$	32/1 1,5 6° 0,45	32/1 1,9 6° 0,45	32/1 2,4 6° 3' 0,45	32/1 3,1 6° 25' 0,46	32/1 3,9 6° 38' 0,47	32/1 4,9 6° 55' 0,48	32/1 6,2 7° 5' 0,49	32/1 8 7° 27' 0,5	32/1 10,1 7° 43' 0,51	64/2 6,8 11° 22' 0,59
40	$egin{array}{c} Z_2/Z_1 & & & & \ m_{_{ m x}} & & & \ oldsymbol{\gamma}_{_{ m m}} & & & \ oldsymbol{\eta}_{_{ m s}} & & & \end{array}$	40/1 1,3 5° 12' 0,42	40/1 1,6 5° 10' 0,42	40/1 2 5° 16' 0,42	40/1 2,5 5° 54' 0,44	40/1 3,2 6° 2' 0,45	40/1 4,1 6° 16' 0,46	40/1 5,1 6° 13' 0,46	40/1 6,6 6° 34' 0,47	40/1 8,3 6° 50' 0,48	40/1 10,4 7° 3' 0,49
50	$egin{array}{c} z_{\scriptscriptstyle 2}/z_{\scriptscriptstyle 1} \ m_{_{\scriptscriptstyle X}} \ oldsymbol{\gamma}_{\scriptscriptstyle m} \ oldsymbol{\eta}_{\scriptscriptstyle s} \end{array}$	50/1 1 4° 29' 0,38	50/1 1,3 4° 25' 0,38	50/1 1,6 4° 32' 0,38	50/1 2,1 5° 7' 0,41	50/1 2,7 5° 15' 0,42	50/1 3,3 5° 27' 0,43	50/1 4,2 5° 48' 0,44	50/1 5,4 5° 56' 0,45	50/1 6,8 6° 15' 0,46	50/1 8,6 6° 41' 0,47
63	$egin{array}{c} Z_2/Z_1 & & & & \ m_{_{ m x}} & & & \ oldsymbol{\gamma}_{_{ m m}} & & & \ oldsymbol{\eta}_{_{ m s}} & & & \end{array}$	-	63/1 1 3° 43' 0,34	63/1 1,3 3° 50' 0,35	63/1 1,7 4° 21' 0,38	63/1 2,1 4° 27' 0,38	63/1 2,7 4° 39' 0,39	63/1 3,4 4° 57' 0,4	63/1 4,4 5° 5' 0,41	63/1 5,5 5° 22' 0,42	63/1 6,9 5° 46' 0,44
Moment d'inert J_1 [kg m²] sur la	,	_	_	-	_	_	0,0014	0,0037	0,0078	0,0192	0,0376

Jeu angulaire de l'axe lent

Le jeu angulaire de l'axe lent, à vis bloquée, est compris **de façon indicative** entre les valeurs figurant au tableau. Ce jeu varie en fonction de l'exécution et de la température.

Nous pouvons fournir sur demande des réducteurs avec jeu **contrôlé** ou **réduit** (voir chap. 5); ils sont toutefois sujets à un supplément de prix et un délai de livraison plus long; choisir un facteur de service **supérieure**.

Taille réducteur	Jeu angul	aire [rad]¹
	min	max
32	0,0030	0,0118
40	0,0025	0,0100
50	0,0020	0,0080
63, 64	0,0018	0,0071
80, 81	0,0016	0,0063
100	0,0013	0,0050
125, 126	0,0011	0,0045
160, 161	0,0010	0,0040
200	0,0008	0,0032
250	0,0007	0,0028

¹⁾ A la distance de 1 m du centre de l'axe lent, le jeu angulaire en mm s'obtient en multiplient par 1 000 les valeurs du tableau (1 rad = 3438').

Rapport d'engrenage du pré-train d'engrenages cylindriques (motoréducteurs MR IV, MR 2IV)

Dans le tableau suivant on indique le rapport de transmission partiel du pré-train d'engrenages cylindrique, à utiliser pour calculer la vitesse de rotation en entrée de l'engrenage à vis.

															Taille	e mo	toréd	ducte	eur M	R IV													
												Di	imens	ions pi	rincip	ales o	de l'ac	coupl	emen	t du m	noteur	Ød Ø	ΣP										
i N		32	2			40	, 50				(63	. 100)				125,	126	;			1	60 .	20	0				2	50		
	1	1×1	140	11×	140	14:	×160	19>	<200		(160 200) ¹⁾		:200 200) ¹⁾	24×2 (28×2		24×	200	28×	250	38×	300	28×	250	38×	300		350 350	38×	300		350 350	55× 60×	
		i	2)	i	2)	i	2)	i	2)	i	2)	i	2)	i	2)	i	2)	i	2)	i	2)	i	2)	i	2)	i	2)	i	2)	i	2)	i	2)
31,5 40 50	41 51	, -	- 2,59 2,59	- - 56	- - 3,5	- 40,6 50,7		32,5 40,6 50,8	2,03 2,03 2,03	- 50,9	- - 3,18	- 40,6 50,8	2,54 2,54	32 40 50	2 2 2	- - -	- - -	- 40,6 50,7	- 2,54 2,54	32,5 40,6 50,8	2,03 2,03 2,03	- - 50,8	- - 3,17	- 40,9 51,1	- 2,56 2,56	32 40 50	2 2 2	- -	-	- 40,9 51,1	- 2,56 2,56	32 40 50	2 2 2
63 80 100	64 82 10	,9	2,59 2,59 2,59	70 87,5 112	3,5 3,5 3,5	63,4 81,1 101	2,54 2,54 2,54	65 - -	2,03 - -	63,6 79,5 102	3,18 3,18 3,18	63,5 81,2 102	2,54 2,54 2,54	64 80 100	2 2 2	- 78,1 100	- 3,13 3,13	63,4 81,1 101	2,54 2,54 2,54	65 81,2 –	2,03 2,03 -	63,5 79,3 102	3,17 3,17 3,17	63,9 81,8 102	2,56 2,56 2,56	64 80 102	2 2 2,56	- 79,3 102	- 3,17 3,17	63,9 81,8 102	2,56 2,56 2,56	64 80 102	2 2 2,56
125 160 200	-		- - -	140 175 221	3,5 3,5 3,5	127 - -	2,54 - -	- - -	- - -	122 152 190	3,8 3,8 3,8	127 160 -	2,54 2,54 –	126 - -	2 - -	125 154 193	3,13 3,86 3,86	125 156 197	3,13 3,13 3,13	- - -	- - -	127 160 200	3,17 4 4	128 161 -	2,56 2,56 –	128 - -	2,56 - -	127 152 190	3,17 3,8 3,8	127³) 159 200	3,17 ³⁾ 3,17 3,17	-	- - -
250	-		-	-	3.5 190 3.8 193 3.86 197 3.13 239 3.8 243 3.86													-	-	252	4	-	-	-	-	239	3,8	-	-	-	-		

								Taille	e motoréd	lucteur Mi	R 2IV							
							Dimens	ions princip	oales de l'ac	ccouplemen	it du moteur	Ød ØP						
i	N		40	, 50			63.	81			100				125, 126			
	11×140 14×160			14×	14×160 19×200			19×	19×200 24×200			24×200 28×25			250			
		i	2)	i	2)	i	2)	i	2)	i	2)	i	2)	i	2)	i	2)	
8 10 12	00	- 114 142	- 7,11 7,11	82,4 103 129	5,15 5,15 5,15	- - -	- - -	- 102 127	- 5,08 5,08	-	- - -	81,2 102 127	5,08 5,08 5,08	- - -	- - -	82,3 103 129	5,15 5,15 5,15	
16 20 25	00	178 218 273	7,11 10,9 10,9	158 198 -	7,91 7,91 –	159 204 253	6,36 6,36 10,1	162 202 258	5,08 8,08 8,08	159 204 253	6,36 6,36 10,1	162 202 258	5,08 8,08 8,08	159 203 254	6,34 6,34 6,34	165 206 253	5,15 5,15 7,91	
31 40 50	00	349 437	10,9 10,9	- - -	-	302 387 484	12,1 12,1 12,1	323 - -	8,08 - -	302 387 484	12,1 12,1 12,1	- - -	- - -	312 385 481	9,75 12 12	- - -	- - -	
63	30	-	-	-	-	605	12,1	-	-	605	12,1	-	-	602	12	_	-	

¹⁾ Dimensions d'accouplement du moteur valables pour réducteur taille 100.

Rendement η

Le rendement η est donné par le rapport P_{N2}/P_{N1} pour les réducteurs (chap. 3.5) et par le rapport P_2/P_1 pour les motoréducteurs (chap. 9). Les valeurs du rendement calculées de la sorte sont valables pour conditions normales de travail avec vis motrice et lubrification correcte, après un bon rodage (chap. 4) et avec une charge près de la valeur nominale.

Le rendement est inférieur (d'environ 12% pour vis avec $z_1 = 1$; 6% pour vis avec $z_1 = 2$; 3% pour vis avec $z_1 = 3$) pendant les **premières heures de fonctionnement** (50 environ) et en général à tout démarrage à froid.

Au démarrage, le **rendement «statique»** η_s (voir tableau au paragraphe précédent) est de loin inférieur à η (vu qu'à la vitesse 0 on doit surmonter le frottement «au départ»); lorsque la vitesse augmente, le rendement augmente également jusqu'à atteindre la valeur indiquée sur le catalogue.

Le **rendement inverse** η_{inv} que l'on obtient lorsque la roue à vis est motrice, est toujours inférieur à η . Il peut être calculé avec une bonne approximation à l'aide de la formule:

$$\eta_{\text{inv}} \approx 2 - 1 \ / \ \eta$$
; de façon analogue: $\eta_{\text{s inv}} \approx 2 - 1 \ / \ \eta_{\text{s}}$

Irréversibilité

Un réducteur ou un motoréducteur à vis est **dynamiquement irréversible** (c'est-à-dire qu'il cesse instantanément de tourner lorsque sur l'axe de la vis il n'existe plus aucun facteur qui maintient en rotation la vis elle-même, par ex.: moment de torsion du moteur, inertie due à la vis et au ventilateur, moteur, volants, accouplements, etc...) lorsque $\eta < 0.5$ puisque η_{inv} devient inférieur à 0.

Cette condition est nécessaire lorsqu'il s'agit d'arrêter ou de retenir la charge, même sans l'intervention d'un frein. Avec des vibrations continues, l'irréversibilité dynamique peut ne pas être possible

Un réducteur ou un motoréducteur est **statiquement irréversible** (c'est-à-dire qu'il est impossible de le mettre en rotation à partir de l'axe lent) lorsque $\eta_c < 0.5$.

Cette condition s'avère nécessaire lorsqu'il s'agit de maintenir la charge à l'arrêt en fait, compte tenu que les rendements peuvent augmenter avec le fonctionnement, il est conseillable que $\eta_s \le 0.4$ ($\gamma_m < 5^\circ$). Avec des vibrations continues, l'irréversibilité statique peut ne pas être possible. Un réducteur ou un motoréducteur a une faible réversibilité statique (c'est-à-dire qu'il est possible de la mettre en rotation à partir de l'axe lent avec des

Un réducteur ou un motoréducteur a une **faible réversibilité statique** (c'est-à-dire qu'il est possible de la mettre en rotation à partir de l'axe lent avec des moments de torsion élevés et/ou à la présence de vibrations) lorsque $0,5 < \eta_s \le 0,6$ (7° 30' $< \gamma_m \le 12^\circ$).

Un réducteur ou un motoréducteur a une **réversibilité statique complète** (c'est-à-dire qu'il est possible de le mettre en rotation à partir de l'axe lent) lorsque $\eta_s > 0.6$ ($\gamma_m > 12^\circ$).

Cette condition est à conseiller lorsqu'il s'agit de faire partir aisément le réducteur à partir de l'axe lent.

Rapport de transmission partiel du pré train d'engrenages cylindrique
3) Avec taille moteur 180 les valeurs sont **128** et 2,56 respectivement

Surcharges

L'engrenage à vis étant souvent soumis à des surcharges statiques et dynamiques élevées, étant donné qu'il est particulièrement apte à les supporter, il est nécessaire - beaucoup plus qu'avec les autres types d'engrenage - de contrôler que la valeur de ces surcharges reste toujours inférieure à M_{amax} (chap. 3.5).

Il se produit normalement des surcharges en cas de:

- démarrages en pleine charge (surtout pour des inerties élevées et de bas rapports de transmission); freinages; chocs;
- réducteurs irréversibles ou peu réversibles où la roue à vis devient motrice par suite des inerties de la machine entraînée;
- puissance appliquée supérieure à la puissance requise; autres causes statiques ou dynamiques.

Nous exposerons ci-après quelques considérations générales sur ces surcharges et donnerons, pour quelques cas typiques, des formules aidant à les évaluer.

S'il n'est pas possible d'évaluer les surcharges, prévoir des dispositifs de sécurité de façon à ne jamais dépasser $M_{2_{max}}$

Moment de torsion au démarrage

Lorsque le démarrage se fait en pleine charge (surtout pour des inerties élevées et de bas rapports de transmission), s'assurer que $M_{2_{max}}$ soit supérieur ou égal au moment de torsion au démarrage que l'on peut calculer selon la formule:

$$\textit{M}_{2} \text{ démarrage} = \left(\underline{\textit{M} \text{ démarrage}}_{\textit{N}_{N}} \cdot \textit{M}_{2} \text{ disponible} - \textit{M}_{2} \text{ requis} \right) \underline{\textit{J}}_{\textit{J}} + \textit{J}_{0} \cdot \mathbf{\eta} + \textit{M}_{2} \text{ requis}$$

ou:

M_s requis est le moment de torsion absorbé par la machine suite au travail et aux frottements;

M_s disponible est le moment de torsion de sortie dû à la puissance nominale du moteur;

J_e est le moment d'inertie (de la masse) du moteur;

J'est le moment d'inertie (de la masse) extérieur (réducteur, accouplements, machine entraînée) en kg m², se rapportant à l'arbre du moteur;

pour les autres symboles voir chap. 2b.

REMARQUE: si on veut s'assurer que le moment de torsion au démarrage est suffisamment élevé pour le démarrage, considérer le rendement η adans l'évaluation de M₂ disponible et les éventuels frottements au départ dans l'évaluation de M_2 requis.

Arrêts de machines à énergie cinétique élevée (moments d'inertie élevés avec vitesses élevées) sans ou avec freinages (avec moteur frein ou frein sur l'axe de la vis)

Sélectionner toujours un réducteur statiquement réversible ($\eta_c > 0,5$); si le moteur est du type moteur frein, vérifier la sollicitation de freinage avec la formule:

$$\left(\frac{Mf}{\eta_{\text{circle}}} \cdot i + M_2 \text{ requis}\right) = \frac{J}{J + J_5/\eta_{\text{circle}}} - M_2 \text{ requis} \leq M_{2 \text{ max}}$$

Mf est le moment de freinage de tarage (voir tableau au chap. 2b); $\eta_{_{\text{sinv}}} = \text{est le rendement statique inverse (voir paragraphe préc.);}$ pour les autres symboles voir ci-dessus et chap. 1.

S'il n'est pas possible de sélectionner un réducteur statiquement réversible (c'est-à-dire lorsque $\eta_c \le 0.5$), il faut que le ralentissement soit suffisamment doux (dans le bout d'éviter toutes sollicitations trop élevées au réducteur) pour que:

$$\underbrace{J_2 \cdot \alpha_2}_{10} - M_2 \leqslant M_{2 \, \text{ma}}$$

ou:
\[\Delta_1 \text{[kg m²] est le moment d'inertie (de la masse) de la machine entraînée se rapportant à l'axe lent du réducteur;
\(\mathcal{M}_2 \text{[daN m] est le moment de torsion absorbé par la machine suite au travail et aux frottements;
\(\alpha_2 \text{[rad/s²] est la décélération angulaire de l'axe lent; on peut la diminuer au moyen de volants sur l'axe de la vis, de rampes électriques de décélération, de la diminution du moment de freinage lorsqu'il y a freinage, etc.

La valeur de α , peut être évaluée sur la base de considérations (de sécurité) théoriques ou de facon expérimentale (à l'aide du temps et de l'espace d'arrêt, etc.). Si le moteur est un moteur frein, α . peut être évaluée (avec prudence) selon la formule

$$\alpha_2 = \frac{10 \cdot Mf}{J_0 \cdot i}$$

où l'on considère le moteur à vide et soumis au moment de freinage statique de tarage Mf [daN m] (voir tableau au chap. 2b).

Fonctionnement avec moteur frein

Temps de démarrage ta et angle de rotation du moteur φa,

$$ta = \frac{(J_0 + J/\eta) \cdot n_1}{95.5 \left(M \text{ démarrage} - \underline{M_2 \text{ requis}}_{i \cdot m} \right)} [s]; \qquad \varphi a_1 = \frac{ta \cdot n_1}{19.1} [rad]$$

Temps de freinage tf et angle de rotation du moteur φf,

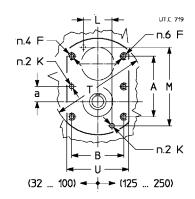
$$tf = \frac{(J_0 + J/\eta_{\text{inv}}) \cdot n_1}{95,5 \left(Mf + \frac{M_2 \text{ requis} \cdot \eta_{\text{inv}}}{j}\right)} [s]; \qquad \varphi f_1 = \frac{tf \cdot n_1}{19,1} [rad]$$

Mf [daN m] est le moment de freinage dynamique de tarage du moteur (voir chap. 2b); pour les autres symboles, voir ci-dessus et chap. 1.

La répétitivité du freinage, avec réducteur rodé et à régime thermique, lorsque change la température du frein ainsi que l'usure de la garniture de frottement est d'environ ± 0,1 · φf, dans les limites normales de l'entrefer et de l'humidité ambiante avec un appareillage électrique adéquat. Durant la phase d'échauffement (1 ÷ 3 h, des petites tailles aux grandes), les temps et les espaces de freinage ont tendance à augmenter et se stabiliser près des valeurs correspondent aux rendements indiqués au catalogue.

Durée de la garniture de frottement

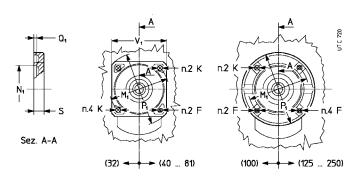
A titre indicatif, le nombre de freinages admis entre deux réglages est donné par la formule:


$$\frac{W \cdot 10^5}{Mf \cdot \varphi f_4}$$

W [MJ] est le travail de frottement entre deux réglages de l'entrefer figurant au tableau; pour les autres symboles, voir la page précédente. La valeur de l'entrefer va de 0,25 (minimum) à 0,7 (maximum); à titre indicatif, le nombre de réglages est de 5..

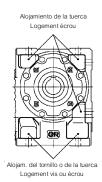
Taille	W
moteur	MJ
63	10,6
71	14
80	18
90	24
100	24
112	45
160, 180M 180L, 200	67 90 125

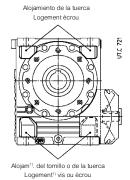
Côté entrée réducteurs


La côté entrée des réducteurs R V a un plain usiné et des trous taraudés pour la fixation éventuelle du support moteur ou autre.

Taille réducteur	а	Α	В	F	K Ø H8	L	M	T Ø	U
				1)	2)				
32 40, 50 63 81	16 20 25	72 81,5 106	54 66,5 80	M 5 M 5 M 6	5 5 6	_ _ _	_ _ _	103 119 149	66 80 96
100 125, 126 160 200 250	31,3 40 50 62,5	125 166 214 274	108 136 168 210	M 8 M 8 M 10 M 12	8 8 10 12	- 78 98 128	216 268 332	187 252 312 387	129 157 194 241

1) Longueur utile du filetage 2 · F 2) Longueur utile du trou 1,6 · K.

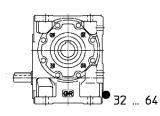

La côté entrée des réducteurs R IV a un bride usinée et des trous pour la fixation éventuelle du support du moteur ou autres.

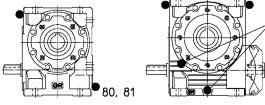


Taille réducteur	F	K Ø	M ₁ Ø	N ₁ Ø H7	P ₁	V ₁	Q ₁	S
	1)							
32 40, 50 63 81	— М 8 М 8	9,5 9,5 9,5	115 115 130	95 95 110	140 140 160	105 105 120	4 4 4,5	10 11 12
100 125, 126 160 200 250	M 10 M 10 M 12 M 12	11,5 - - -	165 165 215 265	130 130 180 230	200 200 250 300	_ _ _	4,5 4,5 5	14 16 18 20

1) Longueur utile du filetage 1,25 · F.

Dimensions des vis de fixation des pattes du réducteur

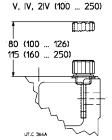




Pour fixer les vis du côté du ventilateur (tailles 100 ... 250), démonter le couvre-ventilateur (qui doit couvrir le logement pour une meilleure circulation de l'air); il faut donc que toute parois éventuelle se trouve à une distance de celui-ci égale à la moitié au moins de l'entre-axes du réducteur.

Taille réducteur	Vis UNI 5737-88 (I max)						
32	M 6 × 25						
40	M 8 × 35						
50	M 8 × 40						
63, 64	M 10 × 50						
80, 81	M 12 × 60						
100	M 14 × 55						
125, 126	M 16 × 65						
160, 161	M 20 × 80						
200	M 24 × 90						
250	M 30 × 120						

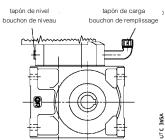
Position des bouchons



Position de montage B61)

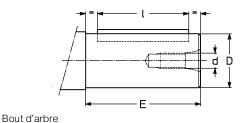
también lado opuesto aussi côté opposé UT.C 722 100 ... 250

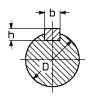
Position de montage B7


V, IV, 2IV (100 ... 250)

IV (100 ... 250)

tapón para nivel de rebosadero tapón de carga bouchon de remplissage


2IV (40 ... 126)



(100 ... 126)

1) Pour fonctionnement continu et avec vitesse élevée on a prévu un réservoir d'expansion: nous consulter.

Bout d'arbre

Arbre lent creux

1_1_1
1///XXX///>
+
11 1///////////////////////////////////
<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>
<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>
t t

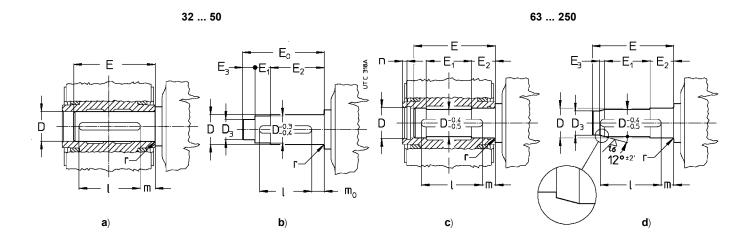
		Bout d'arb	ге		Clavette	Rainure			
D ^o		E	2)	d Ø	$\mathbf{b} \times \mathbf{h} \times \mathbf{l}^{2)}$	b	t	t ,	
11 14 16	j 6 j 6 j 6	23 30 30	(20) (25)	M 5 M 6 M 6	$4 \times 4 \times 18$ (12) $5 \times 5 \times 25$ (16) $5 \times 5 \times 25$	4 5 5	2,5 3 3	12,7 16,2 18,2	
19 24 28	j 6 j 6 j 6	40 50 60	(30) (36) (42)	M 6 M 8 M 8	$6 \times 6 \times 36$ (25) $8 \times 7 \times 45$ (25) $8 \times 7 \times 45$ (36)	6 8 8	3,5 4 4	21,7 27,2 31,2	
32 38 40	k 6 k 6 h 7	80 80 58	(58) (58)	M 10 M 10 M 10	$10 \times 8 \times 70$ (50) $10 \times 8 \times 70$ (50) $12 \times 8 \times 50$	10 10 12	5 5 5	35,3 41,3 43,3	
48 55 60	k 6 m 6 m 6	110 110 105	(82) (82)	M 12 M 12 M 16	$14 \times 9 \times 90 (70)$ $16 \times 10 \times 90 (70)$ $18 \times 11 \times 90$	14 16 18	5,5 6 7	51,8 59,3 64,4	
70 75 90	j 6 j 6 j 6	105 105 130		M 16 M 16 M 20	20 × 12 × 90 20 × 12 × 90 25 × 14 × 110	20 20 25	7,5 7,5 9	74,9 79,9 95,4	
110	j 6	165		M 24	28 × 16 × 140	28	10	116,4	

Trou	Clavette	Rainure						
D Ø H7	$\mathbf{b} \times \mathbf{h} \times \mathbf{l}^*$	b	t	t ,				
19	6 × 6 × 36	6	3,5	21,7				
24	8 × 7 × 45	8	4	27,2				
28	8 × 7 × 63	8	4	31,2				
32	10 × 8 × 70	10	5	35,3				
38	10 × 8 × 90	10	5	41,3				
40	12 × 8 × 90	12	5	43,3				
48	14 × 9 × 110	14	5,5	51,8				
60	18 × 11 × 140	18	7	64,4				
70	20 × 12 × 180	20	7,5	74,9				
75	20 × 12 × 180	20	7,5	79,9				
90	25 × 14 × 200	25	9	95,4				
110	28 × 16 × 250	28	10	116,4				

^{*} Longueur recommandée.

Tolérance uniquement valable pour bout d'arbre rapide. Pour bout d'arbre lent (chap. 5), la tolérance du diamètre D est **h7** pour D ≤ 60, **j6** pour D ≥ 70.
 Les valeurs entre parenthèse correspondent au bout d'arbre court.

Pivot machine


Pour le pivot de la machine sur lequel est calé l'arbre creux du réducteur, nous conseillons d'adopter les dimensions indiquées dans le tableau à la page suivante et dans les dessins ci-dessous.

Tailles 32 ... 50: calage avec clavette (fig. a) ou calage avec clavette et anneaux de blocage (fig. b).

Tailles 63 ... 250: calage avec clavette (fig. c) ou calage avec clavette et douille de blocage (fig. d); voir aussi chap. 4 et 5.

En cas de pivot machine cylindrique avec diamètre unique D (fig.a, c) il est conseillé, pour le logement D côté introduction, la tolérance h6 ou j6 au lieu de j6 ou k6 pour faciliter le montage.

 $\textbf{Important} \text{ le diamètre du pivot de la machine en butée contre le réducteur doit être au moins de (1,18 <math>\div$ 1,25) \cdot D.

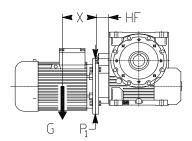
Taille réducteur	D Ø H7/j6, k6	D ₃ Ø H7/n6	E	E _o	E,	E ₂	E ₃	ı	m	m _o	n	r
32	19	15	62,5	67	0	59	8	36	21	19,5	_	1,5
40	24	19	76,5	81	13	54	14	45	23,5	18,5	_	1,5
50	28	24	87	91,5	16,5	61	14	63	21,5	11	_	1,5
63, 64	32	27	110	_	57	34	10	70	28	_	6	1,5
80	38	32	134	_	71	39,5	12	90	30	_	6	1,5
81	40	34	134	_	71	39,5	12	90	30	_	6	1,5
100	48	41	162	_	87	46,5	14	110	35	_	7	2
125, 126	60	52	193	_	102	55	16	140	32	_	7	2
160	70	62	228	_	124	63	16	180	35	_	8	2
161	75	66	228	_	124	63	18	180	35	_	8	2
200	90	80	274	_	150	75	21	200	50	_	9	3
250	110	98	331	_	180	90	25	250	55	_	10	3

2609-22.11 Série A **Rossi**

Maximum moment fléchissant des brides MR

En cas de montage des moteurs fournis par le client, il faut vérifier toujours que le moment fléchissant statique M_b généré par le pois du moteur sur la contrebride de fixation du réducteur soit inférieure à la valeur admissible M_{bmax} indiquée dans le tableau:

 $M_h \leq M_{hmos}$


OL):

 $M_b = G \cdot (X + HF) / 1000 [daN m]$

- G [daN] poids du moteur; numériquement aprox égal à la masse du moteur, exprimée en kg, multipliée par 10
- X [mm] distance du baricentre du moteur du plan de la bride
- HF [mm] fourni dans le tableau en fonction de la taille du réducteur et du diamètre de la bride P1.

Moteurs excessivement longs et minces, même si avec des moments de flexion inférieurs aux limites prescrits, peuvent générer de vibrations anormales pendant le fonctionnement. Dans ces cas là il faut prévoir un support auxiliaire adéquat du moteur (voir documentation spécifique du moteur).

Dans les applications dynamiques où le motoréducteur est sujet à translations, rotations et oscillations on peut générer des sollicitations supérieures à ceux admissibles (ex. fixations pendulaires): nous consulter pour l'examen du cas spécifique.

Moment fléchissant M_{bmax} et dimension HF

Taille réducteur		V,	, IV	2	2IV
	P_1	HF	$M_{ m bmax}$	HF	$M_{ m bmax}$
	Ø	mm	daN m	mm	daN m
32	140 160	28 30	5,6 5,6	_ _	-
40, 50	140 160 200	31 31 43	6,3 6,3 6,3	50 50 –	6,3 6,3 –
63 81	160 200 250	38 38 38	11,2 11,2 11,2	65 65 –	11,2 11,2 -
100	200 250 300	45 45 65	28 28 28	78 - -	28 - -
125, 126	200 250 300	55 55 56	50 50 56	99 99 –	50 50 -
160 200	250 300 350 400	67 67 80 80	100 100 112 112	- - - -	- - -
250	300 350 400 450	80 80 80 90	180 180 180 200	- - - -	- - -

page blanche

Installation et entretien

Index de section

4.1	Généralités	102
4.2	Lubrification	104
4.3	Systèmes de fixation pendulaire	108
4.4	Substitution du motour	106

2609-22.11 Serie A

4.1 - Généralités

S'assurer que la structure sur laquelle le réducteur ou le motoréducteur est fixé est plane, nivelée et suffisamment dimensionnée pour garantir la stabilité de la fixation et l'absence de vibrations, compte tenu de toutes les forces transmises par les masses, par le moment de torsion, par les charges radiales et axiales.

Placer le réducteur ou le motoréducteur de façon à s'assurer un bon passage d'air pour la réfrigération soit du réducteur que du moteur (surtout côté ventilateur tant du réducteur que du moteur).

A éviter: tout étranglement sur le passage de l'air; de placer des sources de chaleur car elles peuvent influencer la température de l'air de réfrigération comme du réducteur par irradiation; recirculation insuffisante de l'air; toutes applications compromettant un bonne évacuation de la chaleur.

Monter le réducteur de manière qu'il ne subisse aucune vibration.

En cas de charges externes employer, si nécessaire, des broches et des cales positives.

Pour l'accouplement réducteur-machine et/ou réducteur et éventuelle bride **B5**, il est recommandé d'utiliser des **adhésifs** type LOCTITE pour les vis de fixation (ainsi que sur les plans de contact pour l'accouplement à bride).

Pour toute installation à ciel ouvert ou en ambiance agressive, appliquer sur le réducteur ou motoréducteur une couche de peinture anticorrosive et ajouter éventuellement de la graisse hydrofuge pour le protéger (spécialement sur les portées roulantes des bagues d'étanchéité et dans les zones d'accès aux bouts d'arbre).

Protéger, le mieux possible, le réducteur ou le motoréducteur de toute exposition au soleil et des intempéries avec les artifices opportuns: cette dernière protection **devient nécessaire** lorsque l'axe lent ou rapide est verticale ou lorsque le moteur est de type verticale doté d'un ventilateur en haut. Pour fonctionnement à température ambiante supérieure à 40°C ou inférieure à 0°C nous consulter.

Avant de connecter le motoréducteur, s'assurer que la tension du moteur corresponde à celle d'alimentation. Si le sens de rotation n'est pas celui désiré, inverser deux phases de la ligne d'alimentation.

Adopter le démarrage étoile-triangle lorsque le démarrage s'effectue à vide (ou en charge très réduite) et pour les démarrages doux, à faibles courants de démarrage, lorsque les sollicitations doivent être plus faibles.

Si on prévoit des surcharges de longue durée, des chocs ou des risques de blocage, installer des protections moteurs, des limiteurs électroniques du moment du torsion, des accouplements hydrauliques, de sécurité, des unités de contrôle ou tout autre dispositif similaire.

Pour service avec un nombre élevé de démarrages en charge, nous conseillons de protéger le moteur à l'aide de **sondes thermiques** (elles sont incorporées); le relais thermique n'est pas adéquat car il doit être calibré à des valeurs supérieures au courant nominal du moteur.

Limiter les points de tension dus aux contacteurs par l'emploi des varistors.

Attention! La durée des roulements et le bon fonctionnement des arbres et des joints dépendent aussi de la précision de l'alignement entre les arbres. L'alignement du réducteur avec le moteur et la machine entraînée doit être parfait (le cas échéant, caler) en intercalant si possible des accouplements élastiques.

Si une fuite accidentelle du lubrifiant peut causer de graves dommages, il faut augmenter la fréquence des inspections et/ou adopter les mesures opportunes (ex.: indication à distance de niveau, lubrifiant pour l'industrie alimentaire, etc.).

En cas d'ambiance polluante, empêcher de manière adéquate tout risque de pollution de lubrifiant par des bagues d'étanchéité ou autre.

Le réducteur ou le motoréducteur ne doit pas être mis en service avant d'être incorporé sur une machine qui soit conforme à la directive 2006/42/EC.

Pour moteurs freins ou en toute autre exécution spéciale exiger la documentation spécifique.

Montaggio di organi sulle estremità d'albero

Il est recommandé d'usiner les perçages des pièces à caler sur les bouts d'arbre selon la tolérance H7; pour les bouts d'arbre rapide avec $D \ge 55$ mm, la tolérance peut être G7, à condition que la charge soit légère et uniforme; pour les bouts d'arbre lent la tolérance doit être **K7**, à moins que la charge ne soit légère et uniforme. Autres données selon le tableau «Bout d'arbre» (chap. 3.13).

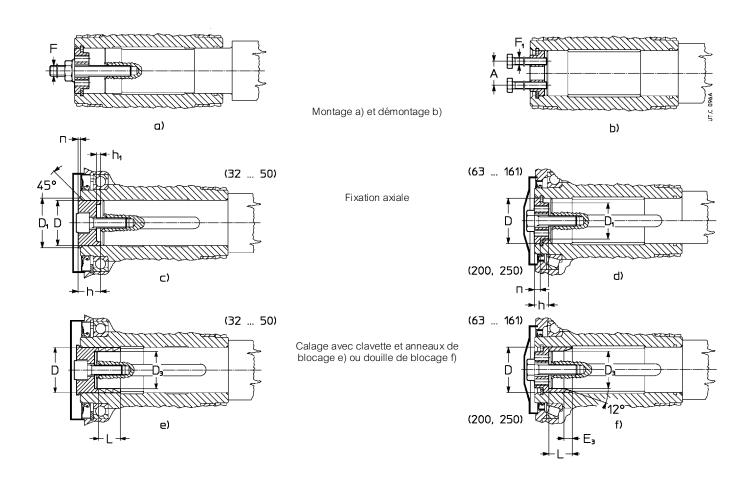
Avant de procéder au montage, bien nettoyer et graisser les surfaces de contact afin d'éviter tout risque de grippage et l'oxydation de contact

Le montage et le démontage s'effectuent à l'aide de **tirants** et d'**extracteurs** en utilisant le trou taraudé en tête du bout d'arbre; pour les accouplements H7/m6 et K7/j6 il est conseillé d'effectuer le montage à chaud en portant la pièce à caler à une température de $80 \div 100$ °C.

Arbre lent creux

Pour le pivot de la machine sur lequel doit être calé l'arbre creux du réducteur on recommande les tolérances j6 ou k6 selon les exigences. Autres données selon le paragraphe «Bout d'arbre» et «Pivot machine» (chap. 3.13).

Pour faciliter le montage et le démontage des réducteurs tailles 63 ... 250 (avec rainure pour circlip) procéder comme indiqué sur les fig. a et b.


Pour la fixation axiale on peut adopter le système représenté aux fig. c, d.

Pour les tailles 63 ... 250, lorsque le pivot de la machine est sans épaulement, on peut placer une entretoise entre le circlip et le pivot (moitié inférieure de la fig. d).

L'utilisation des **anneaux de blocage** (taille 32 ... 50, fig. e) ou de la **douille de blocage** (tailles 63 ... 250, fig. f) permet un montage et un démontage plus aisés et précis, tout en éliminant les jeux entre clavette et rainure relative.

Les anneaux ou la douille de blocage doivent être introduits après le montage, le pivot machine doit être comme indiqué au chap. 3.13. Ne pas utiliser bisulfure de molybdène ou lubrifiants équivalents pour la lubrification des surfaces en contact. Pour le montage de la vis il est recommandé d'utiliser un **adhésif** type LOCTITE 601. Pour les montages verticaux au plafond nous consulter.

Sur demande on peut fournir (chap. 5) la **rondelle** de montage, démontage (tailles 32 ... 50 exclues) et fixation axiale réducteur avec ou sans les **anneaux** ou la **douille de blocage** (dimensions indiquées dans le tableau) et la **protection** de l'arbre lent creux. Les parties en contact avec l'éventuel circlip doivent avoir leurs arêtes vives

Taille réducteur	A	D Ø	D ₁	D₃ Ø	E ₃ ≈	F	F ₁	h	h ₁	L	n	Vis pour fixa	
												UNI 5737-88	M [daN m] ³⁾
32 40 50 63,64 80 81	_ _ _ 18 18 18	19 24 28 32 38 40	22,5 27,5 32 23 27 28	15 19 24 27 32 34	9 11 11	_ _ _ M 10 M 10 M 10	_ _ M 6 M 6 M 6	14,8 14,8 18,5 10 12 12	2,8 2,8 3,2 — —	6,3 12,6 12,6 19 23 23	1,1 1,2 1,2 6 6	M 8 × 25 ¹⁾ M 8 × 25 ¹⁾ M 10 × 30 ¹⁾ M 10 × 35 M 10 × 35 M 10 × 35	2,9 3,2 4,3 4,3 5,3 5,3
100 125, 126 160 161 200 250	23 30 36 36 49 64	48 60 70 75 90 110	35 45 54 59 72 89	41 52 62 66 80 98	13 15 15 17 20 24	M 12 M 14 M 16 M 16 M 20 M 24	M 8 M 10 M 12 M 12 M 16 M 16	14 16 19 19 23 24		28 35 40 40 49 60	7 7 8 8 9 10	$\begin{array}{l} \text{M } 12 \times 45 \\ \text{M } 14 \times 45 \\ \text{M } 16 \times 50 \\ \text{M } 16 \times 50^{3)} \\ \text{M } 20 \times 60^{2)} \\ \text{M } 24 \times 70^{2)} \\ \end{array}$	9,2 17 21 21 43 83

¹⁾ UNI 5931-84.

²⁾ Pour double de blocage: M 20 x 65 et M 24 x 80 UNI 5737-88 classe 10.9 3) Moments de serrage pour anneaux de blocage et douille de blocage.

4.2 - Lubrification

La lubrification des engrenages et des roulements de la vis se fait à bain d'huile; pour les tailles 200 et 250, position de montage B7 avec vitesse de la vis > 710 min⁻¹, les roulements supérieurs de la vis sont lubrifiés par une pompe (calée à l'intérieur de la carcasse). Les autres roulements aussi sont lubrifiés à bain d'huile ou par barbotage à l'exception du roulement supérieur de la roue à vis, position de montage V5 et V6, qui est lubrifié par graisse «à vie» (bague NILOS pour tailles 161 ... 250).

Pour toutes les tailles on a prévu la lubrification avec huile synthétique. Les huiles synthétiques peuvent supporter des températures jusqu'à 95 ÷ 110 °C.

Tailles 32 ... 81: les réducteurs sont fournis pleins d'huile sinthétique (KLÜBER Klübersynth GH 6-320, MOBIL Glygoyle 320, SHELL Omala S4 WE 320; pour vitesse de la vis < 280 min-1 KLÜBER Klübersynth GH 6-680), pour lubrification — si pollution externe inexistante — «**longue durée**», observer scrupuleusement les quantités indiquées aux chap. 3.6 et 3.8 et sur la plaque de lubrification. Température ambiante 0 ÷ 40 °C avec des pointes jusqu'à - 20 °C et +50 °C.

Important: contrôler la position de montage en se rappelant qu'un réducteur, en une position de montage différent de celle indiquée en plaque moteur, pourrait nécessiter une adjonction - par le trou adéquat - de la différence entre les deux quantités de lubrifiant indiquées aux chap. 3.5 et 3.7.

Tailles 100 ... 250: les réducteurs sont fournis sans huile; avant leur mise en route, remplir jusqu'au niveau¹) avec huile sinthétique à base de polyglycoles (PAG) e degré de viscosité ISO doit correspondre à celui qui est indiqué au tableau. Normalement, la première plage de vitesse concerne le train d'engrenages V, la deuxième IV et V (basse vitesse); la troisième groupes et V, IV, 2IV (basse vitesse).

1) Les quantités d'huile indiquées sont indicatives pour l'approvisionnement. La quantité exacte d'huile pour chaque réducteur est définie par le niveau.

Producteur	Huile synthétique PAG
AGIP	Blasia S
ARAL	Degol GS
BP	Enersyn SG-XP
CASTROL	Optiflex A
FUCHS	Renolin PG
KLÜBER	Klübersynth GH6
MOBIL	Mobil Glygoyle
SHELL	Omala S4 WE
TEXACO	Synlube CLP
TOTAL	Carter SY

Degré de viscosité ISO

Valeur moyenne de la viscosité cinématique [cSt] à 40 °C.

valour moyonno de la viceccite el					
Vitesse de la vis	Température ambiante 0 ÷ 40 ° C¹¹ − Huile synthétique				
min ⁻¹	Taille réducteur				
	100	125 161		200, 250	
		B3, V5, V6	B6, B7, B8	B3, V5, V6	B6, B7, B8
2 800 ÷ 1 400 ²⁾	320	320	220	220	
1 400 ÷ 710 ²⁾	320	320		320	220
710 ÷ 355 ²⁾	460	460		460	320
355 ÷ 180 ²⁾	680	680	460	460	
< 180	680	680		680	

On admet des pointes de température ambiante de 10 °C (20 °C pour ≤ 460 cSt) en moins ou 10 °C en plus.

Groupes réducteurs et motoréducteurs: la lubrification étant indépendante, se rapporter donc aux instructions des réducteurs individuels.

En l'absence de pollution provenant de l'extérieur, l'**intervalle de lubrification** est, de façon indicative, celui qui figure au tableau. En cas de fortes surcharges, diviser les valeurs indiquées par deux.

Température huile [°C]	Intervalle de lubrification [h] - Huile synthétique
≤ 65	18 000
65 ÷ 80	12 500
80 ÷ 95	9 000
95 ÷ 110	6 300

Ne pas mélanger des huiles synthétiques de marques différentes; procéder à un nettoyage soigné lors de la vidange si on veut utiliser une huile différente.

Rodage: nous conseillons un rodage d'environ 400 ÷ 1 600 h pour que l'engrenage puisse atteindre son rendement maximum (chap. 15); au cours de cette période, la température de l'huile peut atteindre des valeurs plus élevées que la température normale.

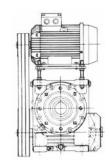
Bagues d'étanchéité: la durée dépend de beaucoup de facteurs qui sont la vitesse de glissement, la température, les conditions ambiantes etc.; à titre indicatif elle peut varier de 3 150 à 25 000 h.

Attention: pour les réducteurs grandeurs 100 ... 250, avant de dévisser le bouchon de remplissage à clapet (symbole) attendre le refroidissement du réducteur et ouvrir avec précaution.

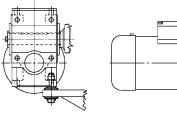
²⁾ Pour ces vitesses il est recommandé de vidanger l'huile, après le rodage.

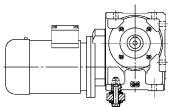
Installation et entretien

4.3 - Systèmes de fixation pendulaire

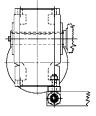

La forme et la robustesse de la carcasse permettent d'intéressants systèmes de fixation pendulaire, par ex même motoréducteur avec transmission par courroie.

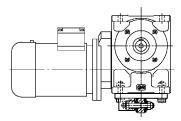
On trouvera ci-après quelques systèmes de fixation pendulaire avec toutes les indications pour en faciliter le choix et l'installation.

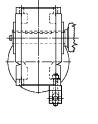

Les systèmes de fixation pendulaire qui peuvent être fournis sont indiqués au chap. 3.4.

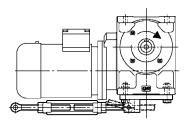

IMPORTANT: en cas de fixation pendulaire, le motoréducteur doit être supporté axialement et radialement par le pivot de la machine et être ancré uniquement contre la rotation au moyen d'une liaison libre axialement et avec des jeux d'accouplement suffisants pour permettre les oscillations qui se manifestent toujours sans pour cela produire des charges supplémentaires dangereuses pour le motoréducteur.

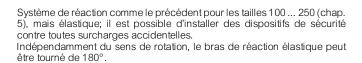
Lubrifier par des produits adéquats les articulations et les parties sujettes à glissement; pour le montage des vis il est recommandé l'utilisation d'un adhésif type LOCTITE 601 est recommandée.



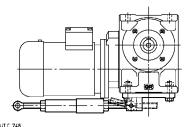

Pour les tailles 32 ... 126 (voir chap. 3.4) un système de réaction semiélastique et économique avec boulon à rondelles élastiques peut être

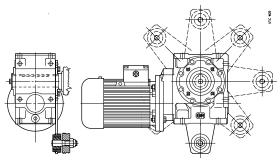

Système de réaction pour les tailles 63 ... 250 (chap. 5) semi-élastique avec rondelles élastiques avec étrier.

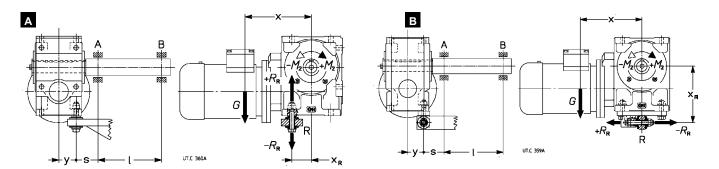


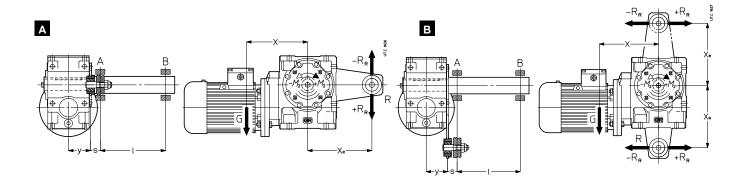





Lorsque le sens de rotation est contraire à celui indiqué, tourner le bras de réaction de 180°.






Sistème de réaction avec bras de réaction fixé à la bride B14, équipé avec douille ammortissant en matériel plastique (voir chap. 5).

2609-22.11 Série A Pour les cas les plus courants, où la force poids G est orthogonale ou parallèle à la réaction R_R (voir les schémas), le calcul des réactions des freins s'effectue de la façon suivante:

1) réaction $R_{\rm R}$ [N] du support R:

$$R_R = (1 / x_R) \cdot [G \cdot x + (\pm M_2)]$$

2) moment fléchissant $M_{_{\mathrm{f}\Delta}}$ [N m] dans la section du roulement A:

$$\mathbf{A} \qquad \mathbf{M}_{fA} = [\mathbf{G} \cdot (\mathbf{y} + \mathbf{s})] - [(\pm \mathbf{R}_{R}) \cdot \mathbf{s}]$$

$$\mathbf{B} \qquad \mathbf{M}_{fA} = \sqrt{[\mathbf{G} \cdot (\mathbf{y} + \mathbf{s})]^2 + [\mathbf{R}_{R} \cdot \mathbf{s}]^2}$$

3) réaction radiale $R_{\rm A}$ [N] du roulement A:

A
$$R_A = \frac{1}{1} \{ [G \cdot (y + s + I)] - [(\pm R_R) \cdot (s + I)] \}$$

$$R_{A} = \frac{1}{1} \sqrt{[G \cdot (y + s + l)]^{2} + [R_{R} \cdot (s + l)]^{2}}$$

4) réaction radiale R_B [N] du roulement B:

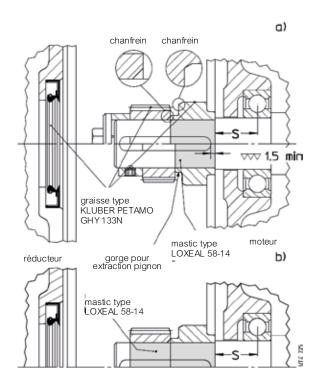
$$R_B = \frac{M_{fA}}{I}$$

où:

- G [N]: force poids = masse du motoréducteur (chap. 3.8) \cdot 9,81 m/s²;
- $-M_2$ [N m]: moment de torsion de sortie à considérer avec le signe + ou en fonction du sens de rotation indiqué dans la figure;
- x [m]: considérer le centre de la masse G positionné à une distance environ égal à 0,2 Y (v. chap. 3.8) du plan de la bride;
- y [m] et x_R [m], v. tableau à coté;
- $-x_R$ [m] (pour boulon de réaction à rondelles élastiques): dimension $x_R = 0.5 \cdot A$ (schéma à la gauche) ou bien $x_R = H + S$ (schéma à la droite) (chap. 3.8 et 5);
- $-x_{\rm p}$ [m] (pour bras de réaction): voir le tableau au chap. 5;
- I, s [m]: la cote s doit être la plus petite possible.

4.4 - Substitution du moteur

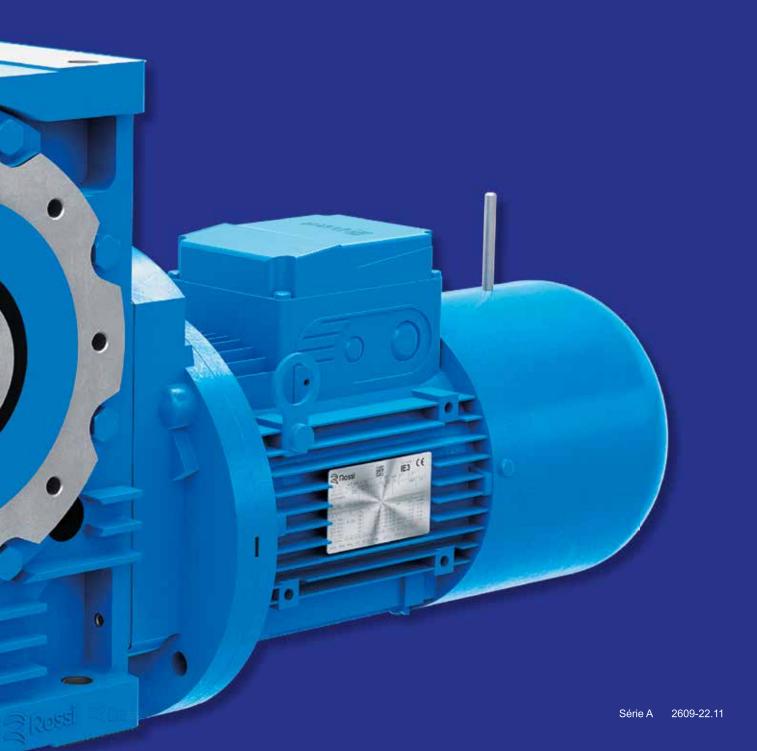
Puisque nos motoréducteurs sont réalisés avec moteur **normalisé**, la substitution du moteur - en cas d'avarie - est extrêmement facilitée. Il est suffisant d'observer les normes suivantes:


- s'assurer que les moteurs aient les ajustements usinés dans la classe précise (IEC 60072-1);
- nettoyer avec soin les surfaces d'accouplement;
- contrôler et éventuellement surbaisser la clavette, de façon à avoir un jeu de 0,1 ÷ 0,2 mm entre son sommet et le fond de la rainure du trou; si la rainure de l'arbre est sans épaulement, défoncer la clavette.

MR V:

- contrôler la tolérance d'accouplement (de poussée) trou/bout d'arbre, qui doit être G7/j6 pour D ≤ 28 mm, F7/k6 pour D ≥ 38 mm;
- lubrifier les surfaces d'accouplement contre l'oxydation de contact;

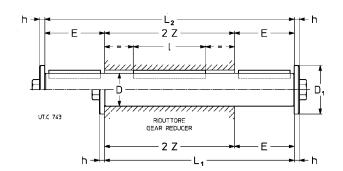
Per MR IV, 2IV:


- contrôler la tolérance d'accouplement (blocage normal) trou /bout d'arbre, qui doit être K6/j6 pour D ≤ 28 mm, J6/k6 pour D ≥ 38 mm;
- s'assurer que les moteurs aient les roulements et les porte-à-faux (cote S) selon le tableau;

Taille moteur	Capacité de charge o	dynamique min [daN]	Cote max 'S'
	Antérieur	Postérieur	mm
63	450	335	16
71	630	475	18
80	900	670	20
90	1 320	1 000	22,5
100	2 000	1 500	25
112	2 500	1 900	28
132	3 550	2 650	33,5
160	4 750	3 350	37,5
180	6 300	4 500	40
200	8 000	5 600	45
225	10 000	7 100	47,5

- monter sur l'arbre moteur, comme suit:
 - l'épaisseur pré-échauffé à 65 °C ayant soint d'appliquer la portion de l'arbre moteur intéressée avec adhésif LOXEAL 58-14 et en s'assurant que entre la rainure clavette et l'épaulement de l'arbre moteur il y a un trait cylindrique de au moins 1,5 mm; prêter attention à ne pas endommager la surface extérieure de l'épaisseur;
 - s'assurer que entre la **clavette** dans la rainure, il y a un trait cylindrique rectifié au moins de 0,9 fois la largeur du pignon;
 - le pignon pré-échauffé à 80 ÷ 100 °C;
 - le système de fixation axiale où prévu (écrou de blocage en tête avec fond et épaisseur ou bague avec une ou plus de vis, fig. a); pour les cas prévus sans fixation axiale (fig. b), appliquer de l'adhésif type LOXEAL 58-14 également la portion de l'arbre moteur sous le pignon;
- en cas de système de fixation axiale avec bague et vis, s'assurer que ces parties ne sortent pas de la surface extérieure de l'épaisseur: serrer à fond la vis et si nécessaire empreinter l'arbre moteur par une pointe;
- lubrifier avec graisse (type KLÜBER Petamo GHY 133N) la denture du pignon, la siège roulante de la bague d'étanchéité et la bague d'étanchéité même, et effectuer avec beaucoup de soin le montage, prêtant particulièrement attention à ne pas endommager le lèvre de la bague d'étanchéité à cause du choc accidentel avec la denture du pignon.

2609-22.11 Série A **2009-22.11**

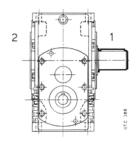

Index de section

5.1	Arbres lents	110
5.2	Arbre lent intégral	110
5.3	Arbre lent creux majoré	110
5.4	Bride	110
5.5	Bras de réaction	111
5.6	Protection arbre lent creux Standardfit	111
5.7	Roulements renforcés axe lent	112
5.8	Roulements renforcés axe rapide	112
5.9	Jeu contrôlé ou réduit	112
5.10	Rondelle arbre lent creux	112
5.11	Rondelle arbre lent creux avec anneaux ou douille de blocage	112
5.12	Protection de l'arbre lent creux	112
5.13	Systèmes de fixation pendulaire	113
5.14	Réducteurs en exécution ATEX II GD et 3GD	114
	Divers	115

2609-22.11 Série A **Rossi** 109

5.1 - Arbres lents

Description supplémentaire à la désignation pour la commande: arbre lent normal ou à double sortie.

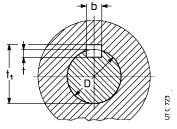

1	Taille éducteur	D	Е	D ₁	h	L,	L ₂	1	2 Z	Vis		lasse [kg]
										UNI 5737-88	Normal	Double sortie
	32 40 50	19 h7 24 h7 28 h7	30 36 42	28 35 35	4 5 5	108 128 148	138 164 190	36 45 63	92	M 6 × 20 M 8 × 25 M 8 × 25	0,3 0,6 0,8	0,4 0,7 1
	63, 64 80 81	32 h7 38 h7 40 h7	58 58 58	47 47 47	5 5 5	184 208 208	242 266 266	70 90 90	150	$\begin{array}{l} \text{M 10} \times 30 \\ \text{M 10} \times 30 \\ \text{M 10} \times 30 \end{array}$	1,2 1,9 2,1	1,5 2,4 2,7
	100 125, 126 160	48 h7 60 h7 70 j6	82 105 105	57 82 82	6 8 8	262 317 355	344 422 460	110 140 180	212	$\begin{array}{l} \text{M 12} \times 40 \\ \text{M 16} \times 45 \\ \text{M 16} \times 45 \end{array}$	3,7 7 11	4,9 9,4 14
	161 200 250	75 j6 90 j6 110 j6	105 130 165	82 102 135	8 10 12	355 430 525	460 560 690	180 200 250	300	M 16 × 45 M 20 × 60 M 24 × 60	12,6 21 39	16 28 51

Le diamètre extérieur de l'élément ou de l'entretoise en butée contre le réducteur doit être $(1.25 \div 1.4) \cdot D$.

5.2 - Arbre lent intégral (taille 250)

Pour admettre les charges radiales élevées indiquées dans le catalogue (250 bis), le réducteur taille 250 peut être fourni avec arbre lent intégral et roulements renforcés. Les dimensions, (l'absence de la rondelle sur le bout d'arbre) sont inchangées.

Description supplémentaire à la désignation pour la commande: arbre lent intégral pos. 1 ou 2 ou bien à double sortie.

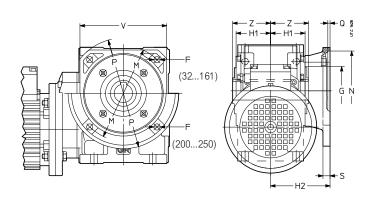

5.3 Arbre lent creux majoré

Les réducteurs et motoréducteurs tailles 32 ... 64 et 100 peuvent être livrés avec arbre lent creux majoré; pour les dimensions voir le tableau suivant.

Taille réducteur	D	Clavette		Rainure	
reducted	Ø H7	b x h x l*	b	t	t,
32	20	6 × 6 × 36	6	4 ¹⁾	22,2 ¹⁾
40	25	8 × 7 × 45	8	4,5 ¹⁾	27,7 ¹⁾
50	30	8 × 7 × 63	8	5 ¹⁾	32,2 ¹⁾
63 ²⁾ , 64 ²⁾	35	10 × 8 × 90	10	6 ¹⁾	37,3¹)
100	50	14 × 9 × 110	14	5,5 ¹⁾	53,8

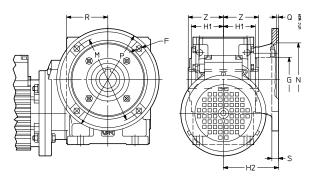
- Longueur recommandée.
- Valeurs **pas** unifiées.
- Sans rainure pour circlip.

Description supplémentaire à la désignation pour la commande: arbre lent creux majoré.


5.4 - Bride

Bride **B5** avec trous traversants et centrage «trou».

Disponible en 2 variantes avec dimensions différentes d'accouplement: bride B5 et bride B5 type B...


L'accessoire est fourni monté sur le réducteur. Sauf indications contraires, la position de montage - vue côté moteur - est sur le côté droit du réducteur en B3. Pour la position de montage opposée il faut préciser après la désignation « montée sur le côté opposé».

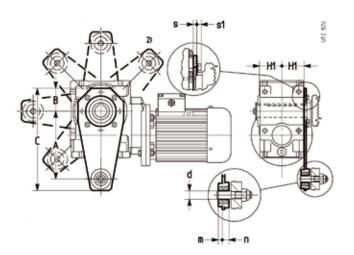
On recommande l'emploi, tant dans les vis que dans les plans de contact, d'adhésifs.

Bride B5

Taille réducteur	F Ø	G Ø	Н,	H ₂	M Ø	N Ø	Р	Q	S	v ⊭	Z	Masse
			h12	h12		H7						kg
32	7	55	34,5	71	100	80	120	4	10	95	39	0,5
40	9,5	68	41,5	80	115	95	140	4	11	110	46	0,8
50	9,5	85	49	80	130	110	160	4,5	12	125	53	1
63, 64	11,5	80	58,5	100	165	130	200	4,5	14	152	63	2
80, 81	14	110	69,5	112	215	180	250	5	16	196	75	3,2
100	14	130	84,5	132	265	230	300	5	18	248	90	5,5
125, 126	18	180	99,5	150	300	250	350	6	20	290	106	8,5
160, 161	18	230	118,5	180	350	300	400	6	22	350	125	13
200	18 ⁸	250	137,5	200	400	350	450	6	22	—	150	20
250	22 ⁸	350	163	236	500	450	550	6	25	_	180	31

Bride B5 type B

Taille réducteur	F Ø	G Ø	H ₁	H ₂	M Ø	N Ø	P Ø	Q	R	S	Z	Masse
32	9,5	55	34,5	75	87	60	110	5	-	9	39	0,8
40	11,5	68	41,5	82	150	115	180	5	80	11	46	1,7
50	14	85	53	98	165	130	200	5	91	12	53	2,4
63, 64	14	80	63,5	107	176	152	210	6	_	14	63	2,9
80, 81	14	110	74,5	129	230	170	280		121	16	75	5,8

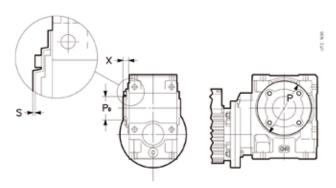

Description supplémentaire à la désignation pour la commande: bride B5 ou bride B5 type B....

En cas de commande séparée du réducteur, la désignation de l'accessoire doit être complété par l'indication du catalogue et de la taille du réducteur de référence

5.5 - Bras de réaction

Voir les éclaircissements techniques au chap. 4.

L'accessoire, comprenant les vis de fixation au réducteur, est fourni démonté. Le montage en direction du moteur n'est pas possible.


Taille réducteur	A	В	С	d Ø	H1 h12	m	n	ø	s1 ≈	X _R	M_2 \leq daN m
32	100	45	157	8 ¹⁾	31,5	5	9	4	4,7	0,100	9,5
40	150	52,5	230	10	44,5	7	13	6	5,6	0,150	15
50	200	60	294	20	53	9,5	15,5	6	5,6	0,200	18
63, 64	200	60	294	20	63,5	9,5	15,5	6	7,5	0,200	33,5
80, 81	250	80	364	20	74,5	9,5	15,5	6	9,2	0,250	67

- 1) Douille amortissant en matériel plastique pas présent.
- 2) Position pas possible pour MR V 32 ... 50, MR IV 32 ... 81

Description supplémentaire à la désignation pour la commande: bras de réeaction.

5.6 - Protection arbre lent creux STANDARDFTT

Protection de la zone pas utilisée de l'arbre lent creux, de matériel plastique (polypropylène PP, couleur noir). L'accessoire est livré démonté et complet de vis de fixation. On conseille l'emploi d'adhésifs de blocage sur les vis de fixation.

	ille. ıcteur	Р	P _o	х	S	Vis	M _{serrage}
		Ø	Ø		H11	UNI 5931	N m
32		90	48	20,5	1,5	M5×14	1,5
40		105	50	20,5	1,6	M6×18	2,8
50		120	61	24	1,7	M6×18	2,8
63,	64	120	61	24	1,7	M8×20	6,3
80,	81	160	78	27,5	1,8	M10×20	12,3

1) Moment de serrage.

Code d'exécution spéciale pour la désignation:

Protection arbre lent creux STANDARDFIT

En cas de commande séparée, la désignation de l'accessoire doit incluire le catalogue et les données des tailles du réducteur.

5.7 - Roulements renforcés axe lent

Les réducteurs et motoréducteurs tailles 63 ... 126 peuvent être fournis avec roulements à rouleaux coniques sur l'axe lent pour permettre des charges radiales et/ou axiales élevées; valeurs sur demande, sauf celles des tailles 100 ... 126, qui sont indiquées au chap. 3.12.

Description supplémentaire à la désignation pour la commande: roulements renforcés axe lent

5.8 - Roulements renforcés axe rapide

Les réducteurs R IV tailles 80 ... 126 avec $i_N \le 160$ peuvent être fournis avec roulements à rouleaux cylindriques sur l'axe rapide pour permettre des charges radiales élevées, valeurs **x 1,6** pour les tailles 80 ... 100, **x 1,4** pour les tailles 125 et 126 (chap. 3.11); cette exécution est de série pour les tailles 160 ... 250.

Description supplémentaire à la désignation pour la commande: roulements renforcés axe rapide.

5.9 - Jeu contrôlé ou réduit

Réducteurs ou motoréducteurs avec jeu contrôlé ou réduit

Valeurs égales à 1/2 (contrôlé) ou 1/4 /réduit) de ceux maximales indiquées au chap. 3.13; exécution avec jeu réduit impossible pour R V et MR V avec vitesse en entrée $n_x > 1$ 400 min⁻¹.

Description supplémentaire à la désignation pour la commande: jeu contrôlé ou réduit.

5.10 - Rondelle arbre lent creux

Tous réducteurs et motoréducteurs peuvent être fournis avec rondelle, circlip (exclues les tailles 32 ... 50), vis pour la fixation axiale et protection (voir chap. 4). Description supplémentaire à la **désignation** pour la commande: **rondelle arbre lent creux**.

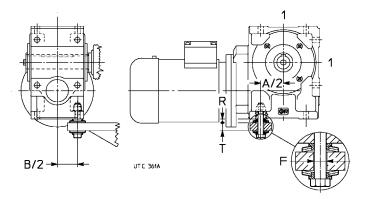
5.11 - Rondelle arbre lent creux avec anneaux ou douille de blocage

Tous réducteurs et motoréducteurs peuvent être fournis avec rondelle, circlip (exclues les tailles 32 ... 50), anneaux de blocage (tailles 32 ... 50) ou douille de blocage (tailles 63 ... 250), vis pour la fixation axiale et protection (voir chap. 4).

Description supplémentaire à la désignation pour la commande: rondelle arbre lent creux avec anneaux ou douille de blocage.

5.12 - Protection de l'arbre lent creux

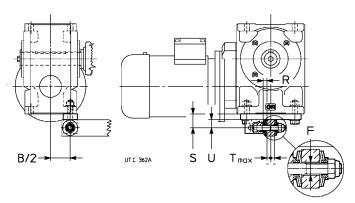
Les réducteurs ou les motoréducteurs, tailles 32 ... 161, peuvent être fournis avec la seule protection pour la zone non utilisée par l'arbre lent creux (chap. 4).


Description supplémentaire à la désignation pour la commande: protection de l'arbre lent creux.

5.13 - Systèmes de fixation pendulaire

Pour éclaircissements techniques, voir chap. 4.

Pour les valeurs des cotes A, B voir chap. 3.6 et 3.8.

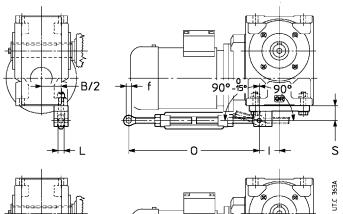


Taille réducteur	Vis UNI 5737-88	Rondelle élastique DIN 2093	Т	F Ø	R 1)	<i>M</i> ₂ ≤ 2)
32	M 6 × 40	A 18 n. 2	8 ÷ 10	8	4,9	_
40	M 8 × 55	A 25 n. 2	10 ÷ 14	11	6,5	_
50	M 8 × 55	A 25 n. 2	10 ÷ 14	11	6,5	20
63, 64	M 12 × 70*	A 35,5 n. 2	14 ÷ 17	20	8,8	31,5
80, 81	M 12 × 90	A 35,5 n. 3	18 ÷ 25	20	10,8	56
100	M 16 × 110	A 50 n. 2	23 ÷ 32	20	13,1	100
125, 126	M 16 × 110	A 50 n. 2	23 ÷ 32	20	13,1	160

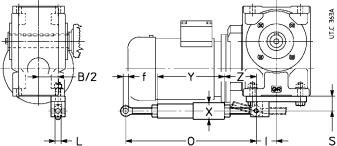
- 1) Valeur théorique: tolérance $0 \div -1$. 2) Pour des M_2 supérieurs, employer 2 boulons de réaction ou le système avec étrier (voir ci-dessous). * Vis modifiée.

Ce système peut être appliqué sur les côtés 1 — il est même **préférable**.

Description supplémentaire à la désignation pour la commande: boulon de réaction à rondelles élastiques.



Taille réducteur	Vis UNI 5737-88	Rondelle élastique DIN 2093	T	F Ø	S	U	R 1)
63, 64	M 12 × 70*	A 35,5 n. 1	14 ÷ 17	20	38	23	6,8
80, 81	M 12 × 90	A 35,5 n. 2	18 ÷ 25	20	38	23	8,8
100	M 16 × 110	A 50 n. 2	25 ÷ 32	20	50	30	13,1
125, 126	M 16 × 110	A 50 n. 2	25 ÷ 32	20	50	30	13,1
160, 161	M 20 × 130	A 63 n. 3	23 ÷ 38	24	65	40	17,9
200	M 24 × 160	A 80 n. 2	29 ÷ 48	30	80	48	20,7
250	M 30 × 200	A 100 n. 2	37 ÷ 60	36	100	60	26,2


1) Valeur théorique: tolérance 0 ÷ -1.

* Vis modifiée.

Description supplémentaire à la désignation pour la commande: boulon de réaction à rondelles élastiques avec étrier.

Taille réducteur	f ∅	0	S	L	X Ø	Υ	Z ≈	_
63, 64	12	280 ÷ 350	38	14	_	_	_	50
80, 81	12	280 ÷ 350	38	14	_	_	_	56
100	16	410 ÷ 510	50	17	52	242	84	74
125, 126	16	410 ÷ 510	50	17	52	242	84	74
160, 161	22	580 ÷ 680	65	24	64	285	147	92
200	28	580 ÷ 680	80	30	88	305	137	113
250	28	580 ÷ 680	100	30	88	305	137	141

Description supplémentaire à la désignation pour la commande: bras de réaction rigide avec étrier (pour l'orientation de l'étrier voir chap. 4) ou élastique avec étrier.

2609-22.11 Série A

🔯 5.14 - Réducteurs en exécution ATEX II 2 GD et 3 GD

Les réducteurs à vis peuvent être fournis, pour permettre l'utilisation en zones avec atmosphères potentiellement explosives, conformes à la directive communautaire ATEX 2014/34/UE, catégorie 2 GD (pour fonctionnement en zones 1 (gaz), 21 (poudres): présence d'atmosphère explosive probable) et 3 GD (pour fonctionnement en zones 2 (gaz), 22 (poudres): présence d'atmosphère explosive improbable) avec température superficielle 135 °C (T4).

Les variantes principales de ce produit sont:

- bagues d'étanchéité à la gomme fluorée;
- bouchons métalliques; bouchon de remplissage avec filtre et soupape;
- plaque d'identification avec marque ATEX et données des limites d'application.
- protection extérieure avec email conductif polyuréthanique bicomposant à l'eau, couleur grise RAL 7040, classe de corrosivité C3 ISO 12944-2;
- Manuel d'instructions ATEX.

Pour la catégorie 2 GD, en fonction de l'interval minimum de contrôle, aussi:

- 2 GD contrôle mensuel
- bagues d'étanchéité doubles axe lent;
- 2 GD contrôle trimestriel (tailles 200, 250)
- bagues d'étanchéité doubles axe lent (taille ≥ 63);
- sondes thermiques température huile;

tcette solution est recommandée lorsque le réducteur est difficilement accessible ou lorsque on veut diminuer la fréquence des contrôles. Température ambiante de fonctionnement: -20 ÷ +40 °C.

Le manuel de service ATEX UT.D 123 (plus documentation additionnelle éventuelle) est partie intégrante de la livraison de chaque réducteur, chaque indication contenue dans ce manuel doit être soigneusement appliquée. En cas de nécessité, nous consulter..

Sélection de la taille du réducteur

Pour la détermination de la grandeur du réducteur il faut procéder comme indiqué au chap. 6, en tenant en compte des indications ultérieures:

- vitesse en entrée maximale n₁ ≤ 1 500 min⁻¹
- facteur de service requis déterminé comme dans le chap. 5 augmenté avec les facteurs de tableau 1 et jamais inférieur à 0,85.

Enfin, il faut vérifier que la **puissance appliquée** P1 soit inférieure ou égale à la puissance thermique nominale Pt, multipliée par les facteurs ft, 11 ... f_{t_s} (voir chap. 4) et le facteur correctif $f_{t_{ATEX}}$ indiqué dans le tableau suivant

Facteurs correctifs du facteur de service réquis fs et de la puissance thermique nominale Pt, pour les exécutions ATEX.

Catégorie ATEX	f s _{atex}	ft _{ATEX}
2GD	1,18	0,8
3GD	1,06	0,9

Choix de la catégorie du moteur

Dans le tableaux à côté sont indiqués

les requisites minimum pour les moteurs à installer avec les réducteurs Rossi en exécution ATEX, dans des zones avec atmosphères potentiellement explosives.

Methodes de protection des appareils electriques:

EEx e à sécurité augmentée; EEx **d** gaine à essai d'explosion; EEx de combinaison de «d» et «e»;

Zone	Réducteur Rossi en exécution ATEX II	Catégorie moteur réquise ¹⁾	
1	2 GD	2 G EEx e 2 G EEx d 2 G EEx de	
21		2 D IP65	
1, 21		2 GD EExe 2 GD EExd 2 GD EExde	à thermistors ou Pt100
2	3 GD	3 G EExnA	_
22		3 D IP54 ²⁾	_
2, 22		3 GD EExnA	

¹⁾ Les appareils adéquates pour la zone 1 sont indiquées également pour la zone 2, et ceux adéquates pour la zone 21 sont indiquées également pour

2) Pour poussières conductrices le moteur doit être 2 D IP65.

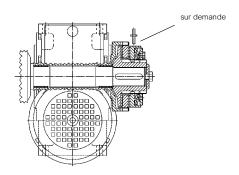
Description supplémentaire à la désignation pour la commande:

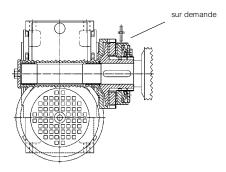
exécution ATEX II ...

... 3 GD T4 tailles 32 ... 250 ... 2 GD T4 contrôle mensuel tailles 32 ... 250 ... 2 GD T4 contrôle trimestriel tailles 200, 250

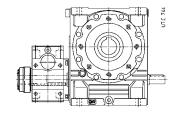
2) Cette désignation, en cas de motoréducteur, concerne la seule partie du réducteur.

Divers


- Réservoir d'expansion pour service continu et à vitesse élevée de réducteurs et motoréducteurs IV 100 ... 250 et 2IV 100 ... 126 position de montage B6.
- Réducteurs et motoréducteurs tailles 100 ... 250 fournis pleins d'huile synthétique.
- Motoréducteurs avec:
- moteur frein (aussi monophasé) avec frein de sécurité et/ou de stationnement à c.c. (tailles 63 ...132) avec des encombrements presque égaux au moteur normal et moment de freinage M₁ ≥ M₂, économie maximale;
- moteur à double polarité (moteur normal, moteur frein, avec frein de sécurité et/ou de stationnement, avec volant) 2.4, 2.6, 2.8, 2.12, 4.6, 4.8, 6.8 pôles;
- moteur frein pour translation: 2, 2.4, 2.6, 2.8, 2.12 pôles (tou jours avec frein à courant continu silencieux, voir photo);


- moteur: à courant continu; monophasé, antidéflagrant; avec deuxième bout d'arbre; avec protection, tension et fréquence spéciale; avec protections contre les surcharges et l'échauffement;
- moteur sans ventilateur avec réfrigération extérieure par convection naturelle (tailles 63 ... 112); exécution normalement utilisée pour l'environnement textile.
- Réducteurs ou motoréducteurs avec limiteur mécanique de moment de torsion en sortie tailles réducteur 32 ...160 (exclue grand. 81).
 Exécution du réducteur avec limiteur mécanique de moment de torsion à friction (surfaces de frottement sans amiante), compact, avec un moment de torsion transmissible élevée jusqu'à 300 daN m et haut niveau de qualité.

Cet appareil protège la transmission contre les surcharges accidentelles en annulant les effets du moment d'inertie des masses en amont et, même si le réducteur est irréversible (le limiteur se trouvant en sortie), de celles en aval.


Lorsque le moment de torsion transmis tend à dépasser le moment de tarage, il se produit le «patinage» de la transmission qui **reste** toutefois en prise avec un moment égal à celui de tarage du limiteur; le patinage cesse lorsque la charge se stabilise de nouveau; en cas de surcharges de brève durée, la machine peut reprendre le fonctionnement normal (après ralentissement ou arrêt) sans nécessiter aucune manœuvre de remise en marche.

Montage du limiteur externe

Montage du limiteur intermédiarie

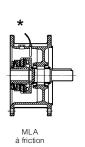
Montage du limiteur dans

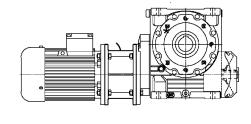
2609-22.11 Série A 2009-22.11

Ce système, étant externe à l'engrenage, a un tarage qui ne varie pas au changement du sens de rotation et ne modifie pas la rigidité et la précision d'engrenages entre vis et roue à vis: cela est important pour garantir, dans le temps, la transmission correcte du moment et la limitation du jeu entre les dents. En outre, ce système consent également la **fixation pendulaire**, avec le limiteur tant **externe** (accès plus aisé) qu'**intermédiaire** (sécurité accrue contre les accidents). Il peut être placé - **dans les groupes** - entre le réducteur à vis initial et celui final tailles **100 ... 250**.

Sur demande détecteur de glissement. Pour plus de détails voir la documentation spécifique.

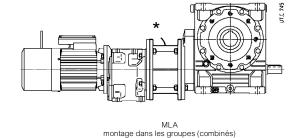
Module MLA limiteur mécanique de moment de torsion à l'entrée, taille moteur 80 ... 200.


Module limiteur mécanique de moment de torsion à intercaler entre le réducteur et le moteur normalisé IEC en position de montage B5 (ou motovariateur à courroie ou épicycloïdal) ou, dans les **groupes**, entre le réducteur initial et le réducteur à vis final tailles **50 ... 250**.


Exécution axialement très compacte; palier avec roulements - à deux rangées de billes à contact oblique (taille moteur ≤ 112) ou à rouleaux coniques montés en «O» - graissés à vie.

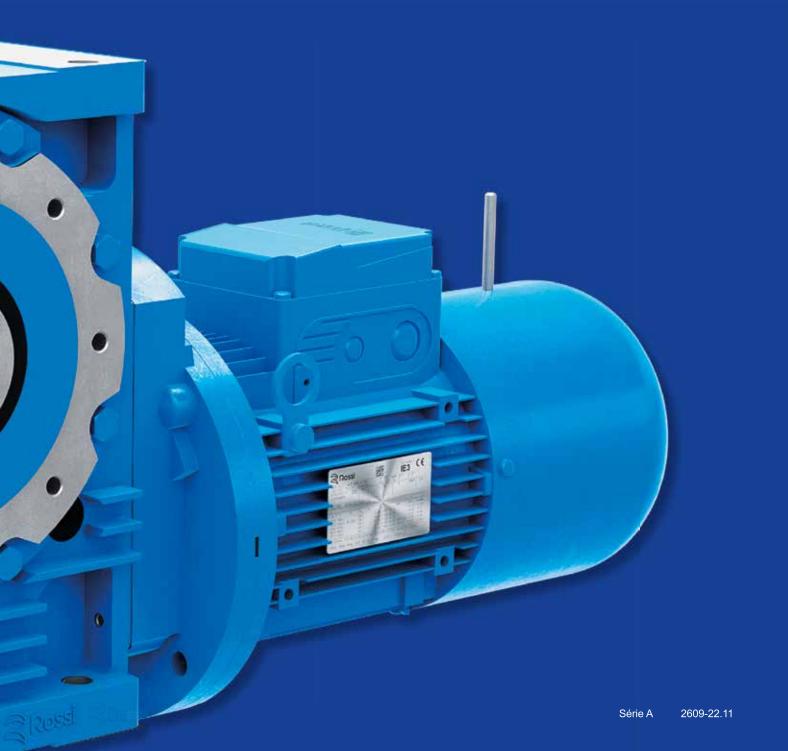
Cet appareil protége la transmission contre les surcharges accidentelles en annulant les effets du moment d'inertie des masses en amont et, dans le cas de réducteur réversible (le limiteur se trouvant en entrée), de celles en aval.

Le type LA est à friction (surfaces de frottement sans amiante). Lorsque le moment de torsion transmis tend à dépasser le moment de tarage, il se produit le «patinage» de la transmission qui **reste** toutefois en prise avec un moment égal à celui de tarage du limiteur; le patinage cesse lorsque la charge se stabilise de nouveau; en cas de surcharges de brève durée, la machine peut reprendre le fonctionnement normal (après ralentissement ou arrêt) sans nécessiter aucune manœuvre de remise en marche.


Sur demande détecteur de glissement. Pour plus de détails voir la **documentation spécifique.**

ΜΙ Δ

montage entre réducteur et moteur ou motovariateur



k -----

- Arbre lent creux taraudé TpN.
- Motoréducteurs avec intercalage de groupe compact embrayage frein ou accouplement hydraulique frein.
- Accouplements semi-élastiques et hydrodynamiques.
- Peintures spéciales possibles.
- Bagues d'étanchéité spéciales; double étanchéité (exclues les tailles 32 ... 50).
- Pour des rapports de transmission élevés les groupes peuvent être obtenus également avec motoréducteur initial **MR IV** pour réducteur final taille ≤ 81 et avec motoréducteur initial **MR 2IV** pour taille réducteur final ≥ 100.

page blanche

Formules techniques

2609-22.11 Série A Rossi 119

Formules principales, relatives aux transmissions mécaniques, selon le Système Technique et le Système International d'Unités (SI).

Temps de démarrage ou d'arrêt, en fonction d'une accélération ou décélération, d'un moment de démarrage ou de de dén freinage

Vitesse dans le mouvement de rotation

Vitesse n et vitesse

Accélération ou décélération en fonction d'un temps de démarrage ou d'arrêt

Accélération ou

décélération angulaire en fonction d'un temps de démarrage ou d'arrêt, d'un moment de démarrage ou de freinage

Espace de démarrage ou d'arrêt, en fonction d'une accélération ou décélération, d'une vitesse angulaire finale

Angle de démarrage ou d'arrêt en fonction d'une accélération ou décélé-ration angulaire, d'une vitesse angulaire finale ou initiale

Masse

Poids (force poids)

Force dans le mouvement de translation vertical (levage), horizontal, incliné $(\mu = \text{coefficient de frottement}, \phi = \text{angle d'inclinaison})$

$\begin{array}{ll} \textbf{Moment} & \textbf{dynamique} \\ \textbf{Gd}^{2}, \ \textbf{moment} & \textbf{d'inertie} \\ \textbf{J} & \text{dû à un mouvement de translation} \\ \end{array}$

Moment de torsion en

fonction d'une force, d'un moment dynamique ou d'inertie, d'une puissance

Travail, énergie

translation, de rotation

Puissance dans le mouvement de translation, de rotation

Puissance disponible à l'arbre d'un moteur monophasé (cos φ = facteur de puissance)

Puissance disponible à l'arbre d'un moteur triphasé

$$t = \frac{V}{a}$$

$$v = \frac{\pi \cdot d \cdot n}{60} = \frac{d \cdot n}{19.1} [m/s]$$

$$n = \frac{60 \cdot v}{\pi \cdot d} = \frac{19,1 \cdot v}{d} [min^{-1}]$$

$$t = \frac{J \cdot \omega}{M} [s]$$

$$v = \omega \cdot r \lceil m/s \rceil$$

$$\omega = \frac{V}{r} [rad/s]$$

$$a = \frac{V}{t} [m/s^2]$$

$$\alpha = \frac{n}{9.55 \cdot t} [rad/s^2]$$

$$\alpha = \frac{39.2 \cdot M}{Gd^2} [rad/s^2]$$

$$\alpha = \frac{\omega}{t} [rad/s^2]$$

$$\alpha = \frac{M}{J} [rad/s^2]$$

$$s = \frac{a \cdot t^2}{2} [m]$$

$$s = \frac{\alpha \cdot t}{2} [m]$$

$$\varphi = \frac{\alpha \cdot t^2}{2} [rad]$$

$$\varphi = \frac{\alpha \cdot t^2}{2} [rad]$$

$$\phi = \frac{n \cdot t}{19,1} [rad]$$

$$m = \frac{G}{g} \left[\frac{kgf s^2}{m} \right]$$

G est l'unité de poids (force poids) [kgf]

$$F = G [kgf]$$

$$F = \mu \cdot G [kgf]$$

$$F = G (\mu \cdot \cos \phi + \sin \phi) [kgf]$$

$$\varphi = \frac{\omega \cdot t}{2} [rad]$$

m est l'unitè de masse [kg]

$$G = m \cdot g[N]$$

$$F = m \cdot g[N]$$

$$F = \mu \cdot m \cdot g[N]$$

$$F = m \cdot g (\mu \cdot \cos \phi + sen \phi) [N]$$

$$Gd^2 = \frac{365 \cdot G \cdot v^2}{n^2} [kgf m^2]$$

$$M = \frac{F \cdot d}{2} [kgfm]$$

$$M = \frac{Gd^2 \cdot n}{375 \cdot t} [kgfm]$$

$$M = \frac{716 \cdot P}{n} [kgfm]$$

$$W = \frac{G \cdot v^2}{19,6} [kgf m]$$

$$W = \frac{Gd^2 \cdot n^2}{7160} [kgfm]$$

$$P = \frac{F \cdot V}{75} [CV]$$

$$P = \frac{M \cdot n}{716} [CV]$$

 $P = \frac{U \cdot I \cdot \boldsymbol{\eta} \cdot \cos \boldsymbol{\varphi}}{736} [CV]$

dissance disponible l'arbre d'un moteur
$$P = \frac{U \cdot I \cdot \boldsymbol{\eta} \cdot \cos \phi}{425} [CV]$$

$$J = \frac{m \cdot v^2}{\omega^2} [kg m^2]$$

$$M = F \cdot r[N m]$$

$$M = \frac{J \cdot \omega}{t} [N m]$$

$$M = \frac{P}{\omega}[N m]$$

$$W = \frac{m \cdot v^2}{2} [J]$$

$$W = \frac{J \cdot \omega^2}{2} [J]$$

$$P = F \cdot v[W]$$

$$P = M \cdot \omega[W]$$

$$\text{P} = \text{U} \cdot \text{I} \cdot \boldsymbol{\eta} \cdot \text{cos} \; \boldsymbol{\phi} \, [\text{W}]$$

$$P = 1.73 \cdot U \cdot I \cdot \eta \cdot \cos \varphi [W]$$

2609-22.11 Série A 211

Rossi S.p.A. Via Emilia Ovest 915/A 41123 Modena - Italy

info@rossi.com www.rossi.com

2609.CAT.A.22.11-0-FR

© Rossi S.p.A. Rossi reserves the right to make any modification whenever to this publication contents. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described.

The Customer is responsible for the correct selection and application of product in view of its industrial and/or commercial needs, unless the use has been recommended by technical qualified personnel of Rossi, who were duly informed about Customer's application purposes. In this case all the necessary data required for the selection shall be communicated exactly and in writing by the Customer, stated in the order and confirmed by Rossi. The Customer is always responsible for the safety of product applications. Every care has been taken in the drawing up of the catalog to ensure the accuracy of the information contained in this publication, however Rossi can accept no responsibility for any errors, omissions or outdated data. Due to the constant evolution of the state of the art, Rossi reserves the right to make any modification whenever to this publication contents. The responsibility for the product selection is of the Customer, excluding different agreements duly legalized in writing and undersigned by the Parties.